Package: dwc.wells 0.2.0

Michael Rustler

dwc.wells: A Package for Condition Predictions for Drinking Water Wells

This package allows to predict the condition of a drinking water well based on ML models. The models are trained with results from pump tests and a large set of input variables e.g. the well material, the age and the number of regenerations.

Authors:Mathias Riechel [aut], Michael Rustler [aut, cre], DWC [fnd], Kompetenzzentrum Wasser Berlin gGmbH [cph]

dwc.wells_0.2.0.tar.gz
dwc.wells_0.2.0.zip(r-4.5)dwc.wells_0.2.0.zip(r-4.4)dwc.wells_0.2.0.zip(r-4.3)
dwc.wells_0.2.0.tgz(r-4.4-any)dwc.wells_0.2.0.tgz(r-4.3-any)
dwc.wells_0.2.0.tar.gz(r-4.5-noble)dwc.wells_0.2.0.tar.gz(r-4.4-noble)
dwc.wells_0.2.0.tgz(r-4.4-emscripten)dwc.wells_0.2.0.tgz(r-4.3-emscripten)
dwc.wells.pdf |dwc.wells.html
dwc.wells/json (API)
NEWS

# Install 'dwc.wells' in R:
install.packages('dwc.wells', repos = c('https://kwb-r.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/kwb-r/dwc.wells/issues

Datasets:

On CRAN:

machine-learningproject-dwc

3.00 score 7 scripts 33 exports 76 dependencies

Last updated 2 years agofrom:45e8670647. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-winNOTEOct 29 2024
R-4.5-linuxNOTEOct 29 2024
R-4.4-winNOTEOct 29 2024
R-4.4-macNOTEOct 29 2024
R-4.3-winOKOct 29 2024
R-4.3-macOKOct 29 2024

Exports:%>%chi2.CramersV.testclassify_Qscombine_pump_test_and_Q_monitoring_datacorrelation_plotextdata_filefill_up_na_with_median_from_lookupfrequency_tableget_pump_test_varsget_W_static_datainterpolate_and_fillinterpolate_Qsload_renamings_csvload_renamings_excelpaste_percentplot_distributionplot_frequenciesprepare_pump_test_dataprepare_pump_test_data_1prepare_pump_test_data_2prepare_quality_dataprepare_volume_dataQs_heatmap_plotread_csvread_ms_accessread_select_renamerename_valuesreplace_na_with_mediansave_datascatterplotselect_rename_colssummarise_marginal_factor_levelstidy_factor

Dependencies:bitbit64cellrangerclicliprcodetoolscolorspacecorrplotcpp11crayondigestdplyrfansifarverforcatsfurrrfuturegenericsggplot2globalsgluegtablehardhathmsisobandkwb.datetimekwb.dbkwb.utilslabelinglatticelifecyclelistenvlsrlubridatemagrittrMASSMatrixmgcvmunsellnlmeodbc32parallellyparsnippbdZMQpillarpkgconfigprettyunitsprogresspurrrr2rR6RColorBrewerreadrreadxlrematchrlangRODBCrsamplescalessema.berlin.utilssliderstringistringrtibbletidyrtidyselecttimechangetzdbutf8vctrsviridisLitevroomwarpwithryardstickzoo

Random Forest

Rendered fromprediction_random-forest.Rmdusingknitr::rmarkdownon Oct 29 2024.

Last update: 2022-07-12
Started: 2022-04-05

xgboost

Rendered fromprediction_xgboost.Rmdusingknitr::rmarkdownon Oct 29 2024.

Last update: 2022-07-12
Started: 2022-04-05

Readme and manuals

Help Manual

Help pageTopics
Titlechi2.CramersV.test
Transfer Qs_rel into binary factor with low and high specific capacityclassify_Qs
Combined Pumptest and Q Monitoring Datasetcombine_pump_test_and_Q_monitoring_data
plots Qs_rel vs. input variable as box plot (categorical input variable) or scatterplot (numerical input variable)correlation_plot
Get Path to File in This Packageextdata_file
Fill up NA values with median of lookup tablefill_up_na_with_median_from_lookup
calculate absolute and relative frequencies of categorical varablesfrequency_table
Get Default Pump Test Variablesget_pump_test_vars
Get W_static measurement data from Neubaupumpversuche, Kurzpumpversuche and other sourcesget_W_static_data
Interpolate and fill up static water levelinterpolate_and_fill
Interpolates Qs time series data to a given time intervalinterpolate_Qs
load renaming table from original excel fileload_renamings_csv
load renaming table from original excel fileload_renamings_excel
Input Data for Well Capacity Predictionmodel_data_reduced
Paste percent sign to numberspaste_percent
plot frequency distribution of numerical variableplot_distribution
plot frequency distribution of factor variableplot_frequencies
prepare pump test data with one row per Qs-measurement + rehab historyprepare_pump_test_data
Prepare pump test data in wide formatprepare_pump_test_data_1
reformats untidy pump test data from wide into long formatprepare_pump_test_data_2
Prepare Quality Dataprepare_quality_data
Prepare Volume Dataprepare_volume_data
Heatmap / raster plot for Qs values over time with each well as one lineQs_heatmap_plot
read csv data file exported by Sebastian Schimmelpfennig from db2read_csv
read table from MS Access data base via odbc connection under 64-bit-Rread_ms_access
read table from MS Access data base; select and rename columns as defined in renamings table ('old_name' -> 'new_name')read_select_rename
rename values of a character vector according to renamings tablerename_values
Replace NAs with medianreplace_na_with_median
Save data frame in different formats: csv, RData, rdssave_data
scatterplot for comparing numeric predictions with observationsscatterplot
selects and renames columns from a data frame according to a reference tableselect_rename_cols
summarise factor levels with relative frequency below a thresholdsummarise_marginal_factor_levels
turn character into factor, sort factor levels and replace NA leveltidy_factor