--- title: "Tutorial (Umberto NXT, v7.1.0.13.503)" author: "Michael Rustler" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Tutorial (Umberto NXT, v7.1.0.13.503)} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # 1 Install R packages ```{r, eval = FALSE} # Enable repository from kwb-r options(repos = c( kwbr = 'https://kwb-r.r-universe.dev', CRAN = 'https://cloud.r-project.org')) # Download and install kwb.umberto in R install.packages('kwb.umberto') ``` # 2 Load the R package kwb.umberto ```{r, fig.show='hold'} library(kwb.umberto) ``` # 3 Import data ## 3.1 Directory with example .csv files The example .csv files (in German format, i.e. decimals are indicated with `,` and `;` is used as field separator) were exported from Umberto NXT (v7.1.0.13.503) and attached to the R package `kwb.umberto` as shown below: ```{r} zipfile <- system.file("extdata/umberto-nxt_v7.1.0.13.503/Beispiel_Auswertung.zip", package = "kwb.umberto") temp <- file.path(tempdir(), "Beispiel_Auswertung") unzip(zipfile, exdir = temp) dir(temp, pattern = ".csv") ``` ## 3.2 Getting the data into R Using the function `kwb.umberto::import_rawdata()` and specifying the parameter `csv_dir` = `temp`) imports the model results from one .csv file that is located in the folder `r temp`. ```{r} rawdata <- kwb.umberto::import_rawdata(csv_dir = temp) ``` To access the structure of the imported data one can run the following command: ```{r} head(rawdata) ``` # 3.3 Data aggregation Once the data is imported into R, it can be aggregated as shown in the subsequent subchapters. ## 3.3.1 Grouping ```{r} data_grouped <- kwb.umberto::group_data(rawdata) head(data_grouped) ``` ## 3.3.2 Making pivot data ```{r} data_pivot <- kwb.umberto::pivot_data(data_grouped) head(data_pivot) ``` ```{r} data_pivot_list <- kwb.umberto::create_pivot_list(data_pivot) head(data_pivot) ``` # 4 Data export Finally the resulting data can be exported to an EXCEL spreatsheet. For each `lci_method` available in the imported dataset a sheet named `lci_method_1` to `lci_method_9` will be created, as there are 9 distinct `lci_method` available for this example data set: `r sprintf("\n- %s\n", unique(rawdata$lci_method))` ```{r} export_path <- file.path(temp, "results.xlsx") print(sprintf("Exporting aggregated results to %s", export_path)) write_xlsx(data_pivot_list, path = export_path) ``` # 5 Data visualisation In addition a simple visualisation of the imported and grouped data can be performed by calling the function `kwb.umberto::plot_results()` as shown below: ```{r} rawdata <- kwb.umberto::import_rawdata(csv_dir = temp) data_grouped <- kwb.umberto::group_data(rawdata) kwb.umberto::plot_results(grouped_data = data_grouped) ```