How to work with the
kwb.qmra
package in R(Studio) is described in the following
chapters
Once the R package is installed it can be loaded with the following command in R(Studio):
The folder with the csv configuration files for a hypothetical use case is located here:
#### DEFINE DIRECTORY ################
confDir <- system.file("extdata/configs/dummy_log10_uniform", package = "kwb.qmra")
confDir
## [1] "/tmp/RtmpznVYQx/Rinst135f7ee0807e/kwb.qmra/extdata/configs/dummy_log10_uniform"
The following screenshot shows the required configuration files
located in confDir
(here:
/tmp/RtmpznVYQx/Rinst135f7ee0807e/kwb.qmra/extdata/configs/dummy_log10_uniform):
The QMRA will be performed - in case the user does not modify them in R - based on the imported input data, which are defined in the configuration folder.
In case of the dummy configuration, a Monte carlo simulation (n = 10) for 365 exposure events per year for three pathogens and the following input parameters will be performed:
PathogenID | PathogenName | PathogenGroup |
---|---|---|
3 | Campylobacter jejuni and Campylobacter coli | Bacteria |
32 | Rotavirus | Viruses |
36 | Giardia duodenalis | Protozoa |
PathogenID | PathogenName | PathogenGroup | type | min | max |
---|---|---|---|---|---|
3 | Campylobacter jejuni and Campylobacter coli | Bacteria | log10_uniform | 10 | 10000 |
32 | Rotavirus | Viruses | log10_uniform | 10 | 10000 |
36 | Giardia duodenalis | Protozoa | log10_uniform | 10 | 10000 |
TreatmentSchemeID | TreatmentSchemeName | TreatmentID | TreatmentName |
---|---|---|---|
1 | Berlin (BF + Slow sand) | 8 | Slow sand filtration |
1 | Berlin (BF + Slow sand) | 9 | Bank filtration |
2 | Depth & surface filtration | 1 | Conventional clarification |
2 | Depth & surface filtration | 5 | Granular high-rate filtration |
2 | Depth & surface filtration | 15 | UV |
TreatmentID | TreatmentName | TreatmentGroup | PathogenGroup | type | min | max |
---|---|---|---|---|---|---|
1 | Conventional clarification | Coagulation, flocculation and sedimentation | Bacteria | uniform | 0.20 | 2.0 |
1 | Conventional clarification | Coagulation, flocculation and sedimentation | Protozoa | uniform | 1.00 | 2.0 |
1 | Conventional clarification | Coagulation, flocculation and sedimentation | Viruses | uniform | 0.10 | 3.4 |
5 | Granular high-rate filtration | Filtration | Bacteria | uniform | 0.20 | 4.4 |
5 | Granular high-rate filtration | Filtration | Protozoa | uniform | 0.40 | 3.3 |
5 | Granular high-rate filtration | Filtration | Viruses | uniform | 0.00 | 3.5 |
8 | Slow sand filtration | Filtration | Bacteria | uniform | 2.00 | 6.0 |
8 | Slow sand filtration | Filtration | Protozoa | uniform | 0.30 | 5.0 |
8 | Slow sand filtration | Filtration | Viruses | uniform | 0.25 | 4.0 |
9 | Bank filtration | Pretreatment | Bacteria | uniform | 2.00 | 6.0 |
9 | Bank filtration | Pretreatment | Protozoa | uniform | 1.00 | 2.0 |
9 | Bank filtration | Pretreatment | Viruses | uniform | 2.10 | 8.3 |
15 | UV | Primary disinfection | Bacteria | uniform | 4.00 | 4.0 |
15 | UV | Primary disinfection | Protozoa | uniform | 4.00 | 4.0 |
15 | UV | Primary disinfection | Viruses | uniform | 4.00 | 4.0 |
name | type | min | max | mode |
---|---|---|---|---|
volume_perEvent | triangle | 0.5 | 3 | 1.5 |
PathogenID | PathogenName | PathogenGroup | Best fit model* | k | alpha | N50 | Host type | Dose units | Route | Response | Reference | Link |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | Campylobacter jejuni and Campylobacter coli | Bacteria | beta-Poisson | NA | 0.144 | 890.00 | human | CFU | oral (in milk) | infection | Black et al 1988 | http://qmrawiki.canr.msu.edu/index.php/Campylobacter_jejuni_and_Campylobacter_coli:_Dose_Response_Models |
32 | Rotavirus | Viruses | beta-Poisson | NA | 0.253 | 6.17 | human | FFU | oral | infection | Ward et al, 1986 | http://qmrawiki.canr.msu.edu/index.php/Rotavirus:_Dose_Response_Models |
36 | Giardia duodenalis | Protozoa | exponential | 0.0199 | NA | NA | human | Cysts | oral | infection | Rendtorff 1954 | http://qmrawiki.canr.msu.edu/index.php/Giardia_duodenalis:_Dose_Response_Models |
PathogenID | PathogenName | infection_to_illness | dalys_per_case |
---|---|---|---|
3 | Campylobacter jejuni and Campylobacter coli | 0.70 | 0.0046 |
32 | Rotavirus | 0.03 | 0.0140 |
36 | Giardia duodenalis | 0.30 | 0.0015 |
Subsequently the risk calculation can be performed in R(Studio) by
executing the following code, which uses the config
that
was imported and inspected above:
##
## # STEP 0: BASIC CONFIGURATION
##
## Simulated 3 pathogen(s): Campylobacter jejuni and Campylobacter coli, Rotavirus, Giardia duodenalis
## Number of random distribution repeatings: 10
## Number of exposure events: 365
##
## # STEP 1: INFLOW
##
## Simulated pathogen: Campylobacter jejuni and Campylobacter coli
## Create 10 random distribution(s): 10^runif (n: 365, min: 1.000000, max: 4.000000)
## Simulated pathogen: Rotavirus
## Create 10 random distribution(s): 10^runif (n: 365, min: 1.000000, max: 4.000000)
## Simulated pathogen: Giardia duodenalis
## Create 10 random distribution(s): 10^runif (n: 365, min: 1.000000, max: 4.000000)
## Providing inflow events ... ok. (0.00 secs)
## Providing inflow paras ... ok. (0.00 secs)
##
## # STEP 2: TREATMENT SCHEMES
##
## Create 10 random distribution(s): uniform (n: 365, min: 0.200000, max: 2.000000)
## Create 10 random distribution(s): uniform (n: 365, min: 1.000000, max: 2.000000)
## Create 10 random distribution(s): uniform (n: 365, min: 0.100000, max: 3.400000)
## Create 10 random distribution(s): uniform (n: 365, min: 0.200000, max: 4.400000)
## Create 10 random distribution(s): uniform (n: 365, min: 0.400000, max: 3.300000)
## Create 10 random distribution(s): uniform (n: 365, min: 0.000000, max: 3.500000)
## Create 10 random distribution(s): uniform (n: 365, min: 2.000000, max: 6.000000)
## Create 10 random distribution(s): uniform (n: 365, min: 0.300000, max: 5.000000)
## Create 10 random distribution(s): uniform (n: 365, min: 0.250000, max: 4.000000)
## Create 10 random distribution(s): uniform (n: 365, min: 2.000000, max: 6.000000)
## Create 10 random distribution(s): uniform (n: 365, min: 1.000000, max: 2.000000)
## Create 10 random distribution(s): uniform (n: 365, min: 2.100000, max: 8.300000)
## Create 10 random distribution(s): uniform (n: 365, min: 4.000000, max: 4.000000)
## Create 10 random distribution(s): uniform (n: 365, min: 4.000000, max: 4.000000)
## Create 10 random distribution(s): uniform (n: 365, min: 4.000000, max: 4.000000)
## Simulated treatment: Conventional clarification for Bacteria
## Simulated treatment: Conventional clarification for Protozoa
## Simulated treatment: Conventional clarification for Viruses
## Simulated treatment: Granular high-rate filtration for Bacteria
## Simulated treatment: Granular high-rate filtration for Protozoa
## Simulated treatment: Granular high-rate filtration for Viruses
## Simulated treatment: Slow sand filtration for Bacteria
## Simulated treatment: Slow sand filtration for Protozoa
## Simulated treatment: Slow sand filtration for Viruses
## Simulated treatment: Bank filtration for Bacteria
## Simulated treatment: Bank filtration for Protozoa
## Simulated treatment: Bank filtration for Viruses
## Simulated treatment: UV for Bacteria
## Simulated treatment: UV for Protozoa
## Simulated treatment: UV for Viruses
## Simulated treatment: Conventional clarification for Bacteria
## Simulated treatment: Conventional clarification for Protozoa
## Simulated treatment: Conventional clarification for Viruses
## Simulated treatment: Granular high-rate filtration for Bacteria
## Simulated treatment: Granular high-rate filtration for Protozoa
## Simulated treatment: Granular high-rate filtration for Viruses
## Simulated treatment: Slow sand filtration for Bacteria
## Simulated treatment: Slow sand filtration for Protozoa
## Simulated treatment: Slow sand filtration for Viruses
## Simulated treatment: Bank filtration for Bacteria
## Simulated treatment: Bank filtration for Protozoa
## Simulated treatment: Bank filtration for Viruses
## Simulated treatment: UV for Bacteria
## Simulated treatment: UV for Protozoa
## Simulated treatment: UV for Viruses
## Joining with `by = join_by(TreatmentID)`
## Joining with `by = join_by(TreatmentID)`
##
## # STEP 3: EXPOSURE
##
## Simulated exposure: volume per event
## Create 10 random distribution(s): triangle (n: 365, min: 0.500000, max: 3.000000, mode = 1.500000)
## Joining with `by = join_by(PathogenGroup, eventID, repeatID)`
## Joining with `by = join_by(eventID, repeatID)`
##
## # STEP 4: DOSE RESPONSE
##
## # A tibble: 3 × 13
## PathogenID PathogenName PathogenGroup `Best fit model*` k alpha N50
## <dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 3 Campylobacte… Bacteria beta-Poisson NA 0.144 890
## 2 32 Rotavirus Viruses beta-Poisson NA 0.253 6.17
## 3 36 Giardia duod… Protozoa exponential 0.0199 NA NA
## # ℹ 6 more variables: `Host type` <chr>, `Dose units` <chr>, Route <chr>,
## # Response <chr>, Reference <chr>, Link <chr>
##
## # STEP 5: HEALTH
##
## # A tibble: 3 × 4
## PathogenID PathogenName infection_to_illness dalys_per_case
## <dbl> <chr> <dbl> <dbl>
## 1 3 Campylobacter jejuni and Campy… 0.7 0.0046
## 2 32 Rotavirus 0.03 0.014
## 3 36 Giardia duodenalis 0.3 0.0015
## Joining with `by = join_by(PathogenID, PathogenName)`
All (input & output) data will be saved in the resulting R object
risk
which an be easily inspected by the user, e.g.:
Input data
## List of 5
## $ inflow :List of 1
## $ treatment :List of 1
## $ exposure :List of 1
## $ doseresponse:List of 1
## $ health : tibble [3 × 4] (S3: tbl_df/tbl/data.frame)
Output data
## List of 4
## $ events : tibble [54,750 × 20] (S3: tbl_df/tbl/data.frame)
## $ total : gropd_df [60 × 15] (S3: grouped_df/tbl_df/tbl/data.frame)
## ..- attr(*, "groups")= tibble [60 × 6] (S3: tbl_df/tbl/data.frame)
## .. ..- attr(*, ".drop")= logi TRUE
## $ stats_total : gropd_df [54 × 14] (S3: grouped_df/tbl_df/tbl/data.frame)
## ..- attr(*, "groups")= tibble [6 × 6] (S3: tbl_df/tbl/data.frame)
## .. ..- attr(*, ".drop")= logi TRUE
## $ stats_logremoval: gropd_df [15 × 13] (S3: grouped_df/tbl_df/tbl/data.frame)
## ..- attr(*, "groups")= tibble [5 × 5] (S3: tbl_df/tbl/data.frame)
## .. ..- attr(*, ".drop")= logi TRUE
Thus the user has access to all
Finally the results of the QMRA can be visualised for each system component as shown below:
In addtion tables with summary statistics, e.g. for the total risk can be generated easily as shown below:
repeatID | TreatmentSchemeID | TreatmentSchemeName | PathogenID | PathogenName | PathogenGroup | events | inflow_median | logreduction_median | volume_sum | exposure_sum | dose_sum | infectionProb_sum | illnessProb_sum | dalys_sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | Berlin (BF + Slow sand) | 3 | Campylobacter jejuni and Campylobacter coli | Bacteria | 730 | 317.3587 | 3.864423 | 1176.020 | 1482.427 | 1508 | 0.9999997 | 0.9999688 | 0.0453883 |
1 | 1 | Berlin (BF + Slow sand) | 32 | Rotavirus | Viruses | 730 | 392.3010 | 3.308807 | 1176.020 | 56903.871 | 56596 | 1.0000000 | 0.9950954 | 0.0737463 |
1 | 1 | Berlin (BF + Slow sand) | 36 | Giardia duodenalis | Protozoa | 730 | 390.1221 | 1.676296 | 1176.020 | 103853.588 | 103939 | 1.0000000 | 1.0000000 | 0.1086357 |
1 | 2 | Depth & surface filtration | 3 | Campylobacter jejuni and Campylobacter coli | Bacteria | 1095 | 317.3587 | 2.162747 | 1764.029 | 208821.740 | 208974 | 1.0000000 | 1.0000000 | 0.4548479 |
1 | 2 | Depth & surface filtration | 32 | Rotavirus | Viruses | 1095 | 392.3010 | 2.628171 | 1764.029 | 230546.187 | 230107 | 1.0000000 | 0.9999854 | 0.1543910 |
1 | 2 | Depth & surface filtration | 36 | Giardia duodenalis | Protozoa | 1095 | 390.1221 | 1.991375 | 1764.029 | 74138.560 | 73567 | 1.0000000 | 1.0000000 | 0.1216932 |