Package: kwb.fcr (via r-universe)

November 2, 2024

Title Fertilizer chemical risk assessment

Version 0.0.0.9000

Description This risk assessment is based on the TGD on risk assessment by the European Comission. Possible Endpoints are soil organisms, groundwater organisms and human health via food consumption.Every variable can be entered as probability distribution to include uncertainties or site specific variations.

License MIT + file LICENSE

URL https://github.com/KWB-R/kwb.fcr

BugReports https://github.com/KWB-R/kwb.fcr/issues

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Suggests covr, knitr, rmarkdown

VignetteBuilder knitr

Imports readxl, magrittr

Repository https://kwb-r.r-universe.dev

RemoteUrl https://github.com/KWB-R/kwb.fcr

RemoteRef HEAD

RemoteSha d275c0ba804b49c4a5afc9726a10315913c2496a

Contents

add_AirWater	2
add_bcf	3
add_deposition	3
add_DT50	4
add_Henry	4
add_kbio	5

25

add_Kd
add_kleach
add_kplant
add_kvolat
add_PNEC_soil
add_SoilWater
add_SoilWater_reverse
add_variables
BCF_regression
create_mcs_input
CumSumSoil
get_c_i_from_PNEC_porewater
get_PEC_human
get_PEC_porewater
get_PEC_soil
get_risk
Kd_regression
longterm_PEC
oneYear_matrix
one_year
rderived
rdist
read_fcr_input
risk_aggregation
risk_interpretation
rlderived
rtnorm
shadingPlot
temp_c_profile

Index

add_AirWater

Estimate Air-Water partition coefficient

Description

Estimation is based on the FCR prepared Monte Carlo table

Usage

add_AirWater(p)

Arguments

р

Parameter table created with oneYear_matrix()

add_bcf

Value

The Parameter table extended by a column for the partition coefficient. Unit is m³/m³.

add_bcf

Estimate bio concentration factor

Description

Estimation is based on the FCR prepared Monte Carlo table

Usage

add_bcf(p, sub_info)

Arguments

р	Parameter table created with oneYear_matrix()
sub_info	The table containing additional substance information loaded with read_fcr_input()

Value

The Parameter table extended by a column for the bio concentration factor.

add_deposition	Calculate soil mass related daily atmospheric deposition
----------------	--

Description

Calculation is based on the FCR prepared Monte Carlo table

Usage

```
add_deposition(p)
```

Arguments

р

Parameter table created with oneYear_matrix()

Value

The Parameter table extended by a column for the atmospheric Deposition. Unit is mg/(kg * d).

add_DT50

Description

Estimation is based on the FCR prepared Monte Carlo table

Usage

add_DT50(p, sub_info)

Arguments

р	Parameter table created with oneYear_matrix()
sub_info	The table containing additional substance information loaded with read_fcr_input()

Details

The estimation is based on the K_d value of a substance according to the technical guidance document on risk assessment Part II (table 8). If there is a distribution of K_d values, the median K_d is used for the estimation. In this function there is no distinction between biodegradbility classes. All substances are assumend to be inherently biodegradable to encourage the user of further half-life research.

Value

The Parameter table extended by a column for the bio concentration factor.

add_Henry

Estimate Henry Coefficient

Description

Estimation is based on the FCR prepared Monte Carlo table

Usage

```
add_Henry(p)
```

Arguments p

Parameter table created with oneYear_matrix()

Value

The Parameter table extended by a column for Henry coefficient. Unit is (Pa*m3)/mol

add_kbio

Description

Calculation is based on the FCR prepared Monte Carlo table

Usage

add_kbio(p)

Arguments

р

Parameter table created with oneYear_matrix()

Value

The Parameter table extended by a column for the biodegredation rate. Unit is 1/d.

add_Kd Estimate Sorption Coefficient

Description

Estimation is based on the FCR prepared Monte Carlo table

Usage

add_Kd(p, sub_info)

Arguments

р	Parameter table created with oneYear_matrix(). Note: D_air variable must be
	available in p if K_d is estimated with linear regression.
sub_info	The table containing additional substance information loaded with read_fcr_input()

Details

Theoretically the initial concentration in soil can become negative if the pollutant concentration in fertilizes is negative. A negative concentration makes obviously no sense in a real situation. However, long-term impact is assessed, a broad concentration range of the pollutant also leads to more uncertain results. Negative concentrations in one year are averaged out. For the regression of the sorption coefficient, the concentration must be positive. Thus, negative values are increased to the concentration in top soil that would appear after one day of deposition.

Value

The Parameter table extended by a column for the sorption coefficient

add_kleach

Description

Calculation is based on the FCR prepared Monte Carlo table

Usage

add_kleach(p)

Arguments

-	
r	1
ь	,

Parameter table created with oneYear_matrix()

Value

The Parameter table extended by a column for the infiltration rate. Unit is 1/d.

add_kplant Calculate plant uptake rate

Description

Calculation is based on the FCR prepared Monte Carlo table

Usage

add_kplant(p)

Arguments

p Parameter table created with oneYear_matrix()

Value

The Parameter table extended by a column for the plant uptake rate. Unit is 1/d.

add_kvolat

Description

Calculation is based on the FCR prepared Monte Carlo table

Usage

```
add_kvolat(p)
```

Arguments

р

Parameter table created with oneYear_matrix()

Value

The Parameter table extended by a column for the volatilization rate. Unit is 1/d.

add_PNEC_soil	Estimate Predicted no	o-effect concentration	for soil organisms
			· · ·

Description

Calculation is based on the FCR prepared Monte Carlo table

Usage

```
add_PNEC_soil(p)
```

Arguments

р

Parameter table created with oneYear_matrix()

Value

The Parameter table extended by a column for the Predicted no-effect concentration for soil organisms. Unit is mg/(kg Dry Matter). add_SoilWater

Description

Estimation is based on the FCR prepared Monte Carlo table

Usage

add_SoilWater(p)

Arguments

-	
r	1
ь	,
•	

Parameter table created with oneYear_matrix()

Value

The Parameter table extended by a column for the partition coefficient. Unit is m³/m³.

add_SoilWater_reverse Estimate Soil-Water partition coefficient starting from infiltration rate

Description

Estimation is based on the FCR prepared Monte Carlo table

Usage

```
add_SoilWater_reverse(p)
```

Arguments

p Parameter table created with oneYear_matrix()

Value

The Parameter table extended by a column for the partition coefficient. Unit is m³/m³.

add_variables

Description

Query and complementation of input variables

Usage

```
add_variables(p, info)
```

Arguments

р	The input data table created with read_fcr_input()
info	Additional input data information, created with read_fcr_input()

Value

The table p exetended by new variable columns needed for the risk assessment

BCF_regression	Estimate the bio concentration factor in two different ways
	\mathcal{J}

Description

Estimation via direct or indirect logarithmic (log 10?) linear regression including pH, organic carbon and soil concentration

Usage

```
BCF_regression(
   constant,
   beta_ph,
   beta_org,
   beta_conc,
   regType = "direct",
   pH,
   org_c,
   conc
)
```

constant	Log constant in linear Kd regression	
beta_ph, beta_org, beta_conc		
	Log coefficient for pH, organic carbon and soil concentration in log-linear Kd regression	
regType	Chacter specifying the way the K_d value is calculated. Either "direct" which means that the regression directly leads to the sorption coefficient or "indirect" which means the regression estimates a concentration in pore water and the sorption coefficient is subsequently be calculated by the quotient of soil and pore water concentration.	
рН	pH value	
org_c	Organic carbon content in percent.	
conc	Soil concentration in mg/kg	

Details

The constant value, the regression parameters (beta) and the soil characteristics can be single numeric values or vectors of the same length.

Value

A vector of bio concentration factors without unit. It is defined as concentration in plant dry matter divided by concentration in soil.

create_mcs_input List of Variables into Monte Carlo simulation input table

Description

List of Variables into Monte Carlo simulation input table

Usage

```
create_mcs_input(data_list, nFields)
```

Arguments

data_list	A list of input variable tables. Each table must have columns "value_1", "value_2",
	"distribution", "site_specific", "pID" and "shift"
nFields	Number of Monte Carlo Cycles

Value

A matrix with all input variables from the list

CumSumSoil

Plot cumulative sum of RQ after application and compare it with initial state

Description

Plot cumulative sum of RQ after application and compare it with initial state

Usage

CumSumSoil(v0, v, year_x, xmin = 0.001, xmax = 10)

Arguments

v0	Vector of initial risk quotient distribution
v	Vector of final risk quotient distribution of x years
year_x	Numarical value of the last year of the risk assessment
xmin	Minimum value of x-Axis
xmax	Maximumg value of x-Axis

Value

Cumulative sums are plotted and the underlying table of quantiles of the initial and final risk quotients

```
get_c_i_from_PNEC_porewater
```

Calculate the initial concentration in soil for RQ porewater = 1

Description

The initial soil concentration is calculated so that the average concetrantion of the first 30 days leads to a PEC_water that equals the PNEC water

Usage

get_c_i_from_PNEC_porewater(dat, info, nFields)

Arguments

dat	List with all the input variables. This list is produced by function read_fcr_input()
	from the Excel sheets.
info	he table containing additional substance information loaded with read_fcr_input()
nFields	Number of Monte Carlo cycles

Details

The equation is a combination of the definition for PEC soil and PEC porewater the from TGD, back-calculating to c0.

Value

Numeric vector of lenght nFields, containig the initial concentrations in µg/L

get_PEC_human Predicted human consumption

Description

Predicted human consumption via crop consumption. The calculation is based on the average predicted soil concentration within the growing period.

Usage

get_PEC_human(p, d, food_only)

Arguments

р	Parameter table created with oneYear_matrix() and extended with add_variables()
d	The number of days of the growing period.
food_only	If TRUE, the predicted human consumption via food is multiplied by 2 to com-
	pensate the disregard of water consumption

Value

Numeric vector of human consumption via crops in µg/d

get_PEC_porewater Predicted pore water concentration

Description

Average predicted environmental concentration (PEC) over d days after fertilizer application. The Calculation is based on the FCR prepared Monte Carlo table

Usage

get_PEC_porewater(p, d)

р	Parameter table created with oneYear_matrix() and extended with add_variables()
d	The number of days after fertilizer application. Somewhere between 1 and the number of days of the growing period, since plant uptake is considered

Value

Numeric vector of concentrations per field in µg/L

<pre>get_PEC_soil</pre>	Predicted soil concentration	
-------------------------	------------------------------	--

Description

Average predicted environmental concentration (PEC) over d days after fertilizer application. The Calculation is based on the FCR prepared Monte Carlo table

Usage

get_PEC_soil(p, d)

Arguments

р	Parameter table created with oneYear_matrix()
d	The number of days after fertilizer application. Somewhere between 1 and the number of days of the graving pariod since plant untake is considered
	number of days of the growing period, since plant uptake is considered

Value

Numeric vector of concentrations per field in mg/kg soil

Description

Risk quotients and high risk scenarios with and without fertilization

Usage

get_risk(fertPEC, noFertPEC, PNEC)

fertPEC	A vector of predicted environmental concentrations at the end of simulation with fertilization
noFertPEC	A vector of predicted environmental concentrations at the end of simulation without fertilization. Both vectors must be based on the same environmental conditions during simulation.
PNEC	A numeric value, defining the predicted no-effect concentration

Value

Data frame with PECs, Risk Quotient and identification of high-risk scenarios for both simulations, with and without fertilization, as well as the risk quotient difference due to fertilization

Kd_regression	Estimate the soil sorption coefficient in two different ways	
---------------	--	--

Description

Estimation via direct or indirect logarithmic linear regression including pH, organic carbon and soil concentration. (log10 is used for all variables)

Usage

```
Kd_regression(
    constant,
    beta_ph,
    beta_org,
    beta_conc,
    regType = "direct",
    pH,
    org_c,
    conc
)
```

Arguments

constant	Log constant in linear Kd regression	
beta_ph, beta_or	rg, beta_conc	
	Log coefficient for pH, organic carbon and soil concentration in log-linear Kd regression	
regType	Chacter specifying the way the K_d value is calculated. Either "direct" which means that the regression directly leads to the sorption coefficient or "indirect" which means the regression estimates a concentration in pore water and the sorption coefficient is subsequently be calculated by the quotient of soil and pore water concentration.	

longterm_PEC

рН	pH value
org_c	Organic carbon content in percent.
conc	Soil concentration in mg/kg

Details

The constant value, the regression parameter (beta) and the soil characteristics can be single numeric values or vectors of the same length.

Value

A vector of sorption coefficients in L/kg

longterm_PEC	PECs for soil, porewater and human consumption over a long period
	of time

Description

Based on the input data provided in Excel sheets, 3 different PECs are calculated. The number of years and number of agricultural fields with different properties (Number of Monte Carlo cycles) can be chosen.

Usage

```
longterm_PEC(
  dat,
  info,
  years,
  nFields,
  use_mixing_factor = FALSE,
  PNECwater_c_i = FALSE,
  food_only = TRUE,
  growing_period = 180,
  t_res = 1,
  traceBackVariables = FALSE,
  keep_c_course = TRUE
)
```

Arguments

dat	A List with all the input variables. This list is produced by function read_fcr_input() from the Excel sheets.
info	A table containing additional substance information loaded with read_fcr_input()
years	Years of fertilizer application
nFields	Number of Monte Carlo cycles

use_mixing_factor		
	Not working yet! If TRUE, porewater is diluted by pollutant free groundwa- ter for a more realistic estimation of risks in groundwater. However the TGD approach assumes porewater = groundwater for the assessment.	
PNECwater_c_i	If TRUE, the initial concentration in soil is derived by a $RQ = 1$ for groundwater risk assessment (PEC_porewater = PNEC_porewater). Thus, the initial concentration is defined by the applied PNEC for groundwater.	
food_only	If TRUE, the predicted human consumption via food is multiplied by 2 to compensate the disregard of water consumption	
growing_period	Numeric value specifiyng the number of days with plant growth	
t_res	Temporal resolution in days to be returned in the output matrix (no effect on the calculation). The default is 1 (every day) which can lead to a very large output matrix. The maximal resolution is 365 days, since every year is calculated seperately.	
traceBackVariables		
	If TRUE, the variables of every simulation year are returned. Note: this can lead to very large lists.	
keep_c_course	If FALSE, the course of concentration is not part of the output. In that case variabel t_res is meaningless.	

Value

List with

- 1. table for all PEC types per year,
- 2. table for concentration course in top soil in the predefined temporal resolution,
- 3. optional: If traceBackVariables TRUE: list of distributed input variables for each year, if traceBackVariables FALSE: Input variables of the first year including initial situations for human consumption and initial concentration in porewater

oneYear_matrix	Creates a matrix with all Input Data for one year Concentration cal-
	culation

Description

The information of the Excel input files are used to prepare a Monte Carlo based data input for the calculation of a yearly concentration dynamic.

Usage

```
oneYear_matrix(dat, c_i, nFields, use_mixing_factor = FALSE)
```

one_year

Arguments

dat	List with all the input variables. This list is produced by function read_fcr_input() from the Excel sheets.
c_i	The initial concentration before fertilizer application
nFields	The number Monte Carlo Simulations. This can be seen as different agriculatural fields with different charactersitics.
use_mixing_fact	or
	If TRUE, a mixing factor for porewater dilution by unpolluted groundwater is used to get the Risk quotient for Groundwater. The defahutl is FALSE. In that case pore water concentration is identical with groundwater concentration as is the approach in the Technical Guidance Document

Details

The pollutant concentration at t = 0 (c_0) already includes the fertilizer application

Value

A Matrix with all available input data for the Assessment. The columns represent the input variable, the rows correspond to the definied number of fields aka. number of Monte Carlo cycles.

one_year

Calculation of the pollutant concentation course in top soil

Description

Estimation is based on the FCR prepared Monte Carlo table. The output rate is split into one rate with plant uptake during plant growth and one rate without plant uptake during winter time.

Usage

```
one_year(p, growing_period, t_res)
```

Arguments

р	Parameter table created with oneYear_matrix()
growing_period	Numeric value specifiyng the number of days with plant growth
t_res	Temporal resolution to be returned in the output matrix (no effect on the calculation)

Details

A time period can be considered as growing period if 1) plants grow and 2) plants will be harvested after growing. Otherwise the uptaken pollutants will return to the soil.

Value

Matrix with number of columns equal to the rows of p and number of rows depending on the defined timesteps with t_res

rderived

Distribution derived by comparable circumstances

Description

This function combines a uniform distribution from minimum to maximum with the upper and lower tail of a normal distribution.

Usage

rderived(n, min, max, a = -Inf)

Arguments

n	Number of samples to be drawn
min	Minimum value of normal comparables
max	Maximum value of normal comparables
а	Minimum of distribution (Default is -Inf)

Details

95%, 2.5% and 2.5% of all drawn values originate from the uniform distribution, the lower tail, and the upper tail of a normal distribution, respectively. The normal distribution is characterized by the mean of minimum and maximum. The standard deviation is derived from the 2.5% and 97.5% quantile definied by the minimum and maximum values. (sd = (max - mean) / 1.959963)

The number of Fields is multiplied by 38 for the uniform distribution, while it is multiplied by 1 for the tails of the normal distribution (38/40 = 95%). Finally, the defined number of fields is randomly drawn from the vector.

Value

numeric vector of length n with randomly drawn values according to the distribution

rdist

Description

Draw n samples from uniform, normal, truncated normal (-> positive only), lognormal or gamma distributions based on two input values

Usage

rdist(dist_name, value_1, value_2, n, shift = 0, seed = NULL)

Arguments

dist_name	Character vector specifying the Name of the distribution. Either "none", "uni- form", "normal" "tnormal" (for truncated), "lognormal", "gamma", "derived", "tderived" or "logderived"
value_1, value_1	2
	Distribution parameters based on dist_name: "none": value_1 is used as constantvalue, value_2 not used "normal": value_1 is mean, value_2 is standard deviation "tnormal": value_1 is mean, value_2 is standard deviation "lognormal": value_1 is log mean, value_2 is standard log deviation (both natu- ral logarithms) "gamma": value_1 is shape, value_2 is rate "uniform": value_1 is minimum, value_2 is maximum "derived": value_1 is minimum of uniform distribution, value_2 is maximum of uniform distribution. Uniform distribution accounts for 95% of all data "tderived": value_1 is minimum of log-uniform distribution, value_2 is maximum of uniform distribution. Uniform distribution accounts for 95% of all data "logderived": value_1 is minimum of log-uniform distribution, value_2 is maximum of uniform distribution. Uniform distribution accounts for 95% of all data
n	Number of samples to be drawn
shift	An numeric value defining a subsequent shift of the distribution The default is 0 (-> no shift)
seed	A numeric value to set the seed for random selection. The default is NULL -> no seed

Details

The values specified in value_1 and value_2 represent min and max for "uniform", mean and standard deviation for "normal" and "tnormal", log mean and log standard deviation (both natural logarithm) for "lognormal", shape and rate for "gamma". The shift value is especially interesting for lognormal or gamma distributions.

Value

Numeric vector of length n with randomly drawn samples of the specified distribution

read_fcr_input Read environmental and pollutant variables

Description

Reads Excel files with environmnetal proporties and substance coefficents.

Usage

```
read_fcr_input(input_path, pollutantName, siteName, fertilizerName = "none")
```

Arguments

input_path	Path of the folder "pollutants" and "sites" that contain the input data excel sheets
pollutantName	Name of Pollutant as in filename of the pollutant (prefix before "_sheet.xslx)
siteName	Name of the site as in filename of the environment sheet (prefix before "_sheet.xslx)
fertilizerName	Name of the fertilizer as in filename of the fertilizer sheet (prefix before "_sheet.xslx). If fertilizerName = "none", fertilizer application and pollutant concentration will be set to 0.

Details

Both input files must have the same path. The pollutant excel files must be named "'pollutant-Name'_sheet.xlsx". Furthermore, both excel tables must have the same number of columns and column names.

Value

List of two items names "dat" and "info" and containing all the input variable data (information about distribution type, distribution parameters, type of variability and a unique variable ID) and additional information of how to simulate substance behavior.

risk_aggregation

Description

Risk Aggregation Calculation of Delta Risk Quotient and Maximum Risk

Usage

```
risk_aggregation(df_risk)
```

Arguments

df_risk A dataframe created by get_risk()

Details

The Delta Risk Quotient (RQ) is the average increase of high-risk scenarios caused by fertilization. A high-risk scenarios are defined as scenarios with a final RQ higher than 1. The increase refers to a comparison between two similar scenarios, the only difference is the application of fertilizer.

The maximum risk is the average RQ of the upper 5% of the RQ-Distribution. It is meant to describe the upper tail of the distribution.

Further information can be found in the report of the Eurpean Horizon 2020 project Nextgen "Assessment and risk analysis of NextGen demo case solutions" (p.151)

Nextgen: Deliverable 2.1

Value

A list of 2, the delta risk quotient and the maximum risk

risk_interpretation Risk Interpretation Assigns a risk to the aggregated risk parameters

Description

Risk Interpretation Assigns a risk to the aggregated risk parameters

Usage

risk_interpretation(delta_RQ, risk_max)

delta_RQ	Numeric vector of length 1: Difference of of high-risk simulations between sce- narios with and without fertilization
risk_max	Numeric vector of length 1: Mean value of the Upper five percent of RQ distribution

Details

Further information can be found in the report of the Eurpean Horizon 2020 project Nextgen "Assessment and risk analysis of NextGen demo case solutions" (p.151)

Nextgen: Deliverable 2.1

Value

A list of 2, the delta risk quotient and the maximum risk

rlderived

Log-Distribution derived by comparable circumstances

Description

This function draws random values from a uniform distribution (minimum to maximum) combined with the upper and lower tail of a log normal distribution. Minimum and maximum values are transformed to a log10 scale first.

Usage

rlderived(n, min, max)

Arguments

n	Number of samples to be drawn
min	Minimum value of normal comparables
max	Maximum value of normal comparables

Details

95%, 2.5% and 2.5% of all drawn values originate from the log-uniform distribution, the lower tail, and the upper tail of a log-normal distribution, respectively. The log-normal distribution is characterized by the mean of log-minimum and log-maximum. The standard deviation is derived from the 2.5% and 97.5% quantile defined by the minimum and maximum values. sd = (log10(max) - log10(mean)) / 1.959963

The number of Fields is multiplied by 38 for the uniform distribution, while it is multiplied by 1 for the tails of the log-normal distribution (38 / 40 = 95%) Finally, the defined number of fields is randomly drawn from the vector.

rtnorm

Value

numeric vector of length n with randomly drawn values according to the distribution

rtnorm Truncate normal distribution

Description

Truncate normal distribution at a minimum or maximum value

Usage

rtnorm(n, mean, sd, a = -Inf, b = Inf)

Arguments

n	Number of samples to be drawn
mean	Mean value of normal distribution
sd	Standard deviation of Normal distribution
а	Minimum of distribution (Default is -Inf)
b	Maximum of distribution (Default is Inf)

Value

numeric vector of length n with randomly drawn numbers of the truncated normal distribution

shadingPlot	Plot cumulative sum of RQ after application and compare it with ini-
	tial state

Description

Plot cumulative sum of RQ after application and compare it with initial state

Usage

```
shadingPlot(
  mat_xRow,
  ymin = 0,
  ymax = max(mat_xRow),
  resolution = 0.01,
  xlab = "",
  ylab = "",
  main = ""
)
```

mat_xRow	A matrix where every row is a distribution for one x value
ymin	Minimum value of y-Axis
ymax	Maximumg value of y-Axis
resolution	The widths of quantiles used for shading (default is 1%)
xlab,ylab,main	Óptional definitions of axis and title

Value

A plot with overlapping transperant quantiles

temp_c_profile Calculation of the pollutant concentration in top soil

Description

Calculation of the pollutant concentration in top soil

Usage

```
temp_c_profile(conti_input, output_rate, c_i, t_max, t_res, t_beg = 0)
```

Arguments

conti_input	Numeric vector of atmospheric depositions in mg/kg topsoil
output_rate	Numeric vector of absolute pollutant decay rates.
c_i	Numeric vector of initial concentrations in top soil
t_max	Numeric value with the last considered timestep (unit depends on the unit of the decay rate)
t_res	Temporal resolution (numeric value) of the timesteps returned (unit depends on the unit of the decay rate)
t_beg	Numeric value of the first considered timestep. This value does not influence the calculation itself, it is only used for row names.

Value

Matrix with columns corresponding to the length of the provided numeric vectors and rows depending on the defined timesteps with t_{max} and t_{res}

24

Index

add_AirWater, 2 add_bcf, 3 ${\tt add_deposition, 3}$ add_DT50, 4 add_Henry, 4 add_kbio, 5 add_Kd, 5 add_kleach, 6 add_kplant,6 add_kvolat,7 add_PNEC_soil, 7 add_SoilWater, 8 add_SoilWater_reverse, 8 add_variables,9 add_variables(), 12, 13 BCF_regression, 9 $\texttt{create_mcs_input, 10}$ CumSumSoil, 11 get_c_i_from_PNEC_porewater, 11 get_PEC_human, 12 get_PEC_porewater, 12 get_PEC_soil, 13 get_risk, 13 get_risk(), 21 Kd_regression, 14 longterm_PEC, 15 one_year, 17 oneYear_matrix, 16 oneYear_matrix(), 2-8, 12, 13, 17 rderived, 18 rdist.19 read_fcr_input, 20 read_fcr_input(), 3-5, 9, 11, 15, 17

```
risk_aggregation,21
```

risk_interpretation, 21
rlderived, 22
rtnorm, 23
shadingPlot, 23
temp_c_profile, 24