Package: kwb.datetime (via r-universe)

September 2, 2024

Title Functions for date/time objects
Version 0.5.0

Description Functions for date/time objects, e.g. functions to convert
timestamps between different time zones. Correctness for some
functions still to be verified!

License MIT + file LICENSE
URL https://github.com/kwb-r/kwb.datetime

BugReports https://github.com/kwb-r/kwb.datetime/issues
Imports kwb.utils (>=0.4.2)

Suggests knitr (>= 1.23), rmarkdown (>= 1.13), testthat (>= 2.0.1)
VignetteBuilder knitr

Remotes github::kwb-r/kwb.utils

Encoding UTF-8

RoxygenNote 7.1.1

Repository https://kwb-r.r-universe.dev

RemoteUrl https://github.com/KWB-R/kwb.datetime
RemoteRef HEAD

RemoteSha 5f2b2c4c258ab776bacc6b968ea86af55fbf40b2

Contents

berlinNormalTimeToBerlinLocalTime
berlinNormalTimeToUTC e
currentDateString
currentQUArtEr e e e e e e e e e e e e e
CUITENtYCAT v v v e i e
date_range_CEST e
daysPerMonth L
getEqualStepRanges L L
getTimestampSummaryo e

https://github.com/kwb-r/kwb.datetime
https://github.com/kwb-r/kwb.datetime/issues

2 berlinNormalTimeToBerlinLocalTime
getTimestepInSeconds 7
hasTimeFormat e 8
hsDateStr e e 9
hsTOPOSIX e 9
hsTsIn o e e e e 11
intervalKey e e e 11
isoToLocaltime 12
isValidTimestampSequence L oo 12
matchingTimeFormat 13
minTimeStep 14
reformatTimestamp L e e e 15
roundTime L e e 15
sequenceOfTimestamps Lo 16
stringToPOSIX 17
test_TimeConversionFunctions e 17
textToEuropeBerlinPosix 18
timesAroundClockChange 19
timestampln L 20
to.GMT.plus.l o 21
toGmtRelativePosix e 21
tOUTC . . e 22
utcOffset L e e 22
utcOffsetBerlinTime oo 23

Index 25

berlinNormalTimeToBerlinlLocalTime
berlinNormalTimeToBerlinLocalTime

Description

berlinNormalTimeToBerlinLocalTime
Usage

berlinNormalTimeToBerlinLocalTime(x)
Arguments

X

character string representing a timestamp measured in Berlin without adjust-
ing time during the summer period, i.e. keeping the normal (= winter) time (=
UTC+1)

berlinNormalTimeToUTC 3

berlinNormalTimeToUTC berlinNormalTimeToUTC

Description

berlinNormalTimeToUTC

Usage

berlinNormalTimeToUTC(x)

Arguments
X character string representing a timestamp measured in Berlin without adjust-
ing time during the summer period, i.e. keeping the normal (= winter) time (=
UTC+1)
currentDateString String representing the current Date
Description

String representing the current Date

Usage

currentDateString(format = "%d %B %Y")

Arguments

format format string containing percentage-placeholders as defined in strptime

Value

character string representing the current date

Examples

currentDateString()
currentDateString("%d.%m.%Y")
currentDateString ("%Y-%m-%d")

date_range_CEST

currentQuarter Number of current Quarter

Description

Number of current Quarter

Usage

currentQuarter()

Value

number of current quarter (1, 2, 3 or 4)

currentYear Current Year (as numeric)

Description

Current Year (as numeric)

Usage

currentYear()

Value

Current year as four digit number (numeric)

date_range_CEST When does Summer Time start / end?

Description

At what days does the summer time start /end in a given year?

Usage
date_range_CEST(year)

Arguments

year Scalar year number between 1980 and 2100.

daysPerMonth

Examples

At what days does summer time start and end, respectively, in 2010?

date_range_CEST(2010)

Check if summer time really starts at 2010-03-28. Timestamps between
2:00 (inclusive) and 3:00 (exclusive) do not exist in Central European Time

Note that in this case R removes the
as.POSIXct("2010-03-28 ©1:59:59", tz =
as.POSIXct("2010-03-28 02:00:00", tz =
as.POSIXct("2010-03-28 02:59:59", tz =
as.POSIXct("2010-03-28 03:00:00", tz =

time information!
"Europe/Berlin") # CET
"Europe/Berlin”) # Time removed!
"Europe/Berlin”) # Time removed!
"Europe/Berlin") # CEST

Check if summer time really ends at "2010-10-31. Timestamps between
2:00 (inclusive) and 3:00 (exclusive) exist twice, once in CEST and a
second time in CET, so R does not know which one you mean!

as.POSIXct("2010-10-31 01:00:00", tz =
as.POSIXct("2010-10-31 02:00:00", tz =

"Europe/Berlin”) # CEST
"Europe/Berlin") # CEST

R seems to decide (on my computer!) that times before 02:01:50 belong to
CEST and at or after that time belong to CET!

as.POSIXct("2010-10-31 02:01:49", tz =
as.POSIXct("2010-10-31 02:01:50", tz =

as.POSIXct("2010-10-31 02:02:00", tz =
as.POSIXct("2010-10-31 03:00:00", tz =

"Europe/Berlin”) # CEST
"Europe/Berlin”) # CET

"Europe/Berlin") # CET
"Europe/Berlin") # CET

Get the starts and ends of CEST for a sequence of years

date_range_CEST(2017:2020)

daysPerMonth Number of Days in the Month of the given Date

Description

Number of Days in the Month of the given Date

Usage

daysPerMonth(date)
Arguments

date date object
Value

(integer) number of days in the month of the given date

6 getEqualStepRanges

Examples

You may either pass a Date object...
daysPerMonth(as.Date(”2010-01-04"))

... or a date string in yyyy-mm-dd format
daysPerMonth(”2010-01-04")

Number of days in February 2010
daysPerMonth(”2010-02-01")

Number of days in February 2012
daysPerMonth(”2012-02-15")

getEqualStepRanges Sequences of Date Time Objects With Equal Time Step

Description

Sequences of Date Time Objects With Equal Time Step

Usage

getEqualStepRanges(times)

Arguments

times vector of POSIXct objects

Examples

Generate a sequence of date and time objects
as_berlin_posix <- function(x) as.POSIXct(x, tz = "Europe/Berlin")
times <- seq(
from = as_berlin_posix("2019-01-01"),
to = as_berlin_posix("2020-01-01"),
by = 3600
)

As expected, exactly one sequence of equal time step is found:
getEqualStepRanges(times)

Simulate the case that timestamps were read from a text file and converted
with as.POSIXct()

timestamps <- as.character(times)

new_times <- as.POSIXct(timestamps, tz = "Europe/Berlin”)

Show the sequences of equal time steps again
getEqualStepRanges(new_times)

getTimestampSummary 7

What happened? The timestamp 2019-10-27 02:00 appears twice! Once in CEST
and once in CET. Use a helper function that assigns CEST and CET as

required:

good_times <- textToEuropeBerlinPosix(timestamps)

Check if the original date and time objects could be reproduced
identical (good_times, times)

getTimestampSummary Summary about a Sequence of (Text) Timestamps

Description

Summary about a Sequence of (Text) Timestamps

Usage

getTimestampSummary(x, format = NULL, template_index = NULL)

Arguments
X vector of character representing timestamps
format format description, such as "%Y-%m-%d %H:%M:%S"

template_index index in x from which to select a timestamps that is used as a template when
looking for an appropriate timestamp format
Examples

x <- kwb.datetime: :sequenceOfTimestamps(”2019-10-31", "2019-11-01")
getTimestampSummary (x)

getTimestepInSeconds Get Time Step in Seconds

Description

Find the time step applied in a sequence of timestamps. Give a warning if more than one time step
was found.

Usage

getTimestepInSeconds(timestamps, default = 60)

8 hasTimeFormat

Arguments

timestamps vector of POSIXt objects

default default time step in seconds. Default: 60
Value

smallest, non-zero timestep in seconds found in the sequence of timestamps

hasTimeFormat Do Timestamps have the expected Format?

Description

Checks if timestamps are formatted according to timeformat

Usage

hasTimeFormat(timestamps, timeformat = NULL, method = 1L)

Arguments
timestamps character strings representing timestamps.
timeformat character string giving a date-time format as used by strptime.
method Method used to do the check. 1: Check based on pattern matching 2: Check
whether as.POSIXct returns valid time objects and if re-formatting these objects
are identical to the original timestamps. The simple check should be much faster
for many timestamps to be checked.
Examples

hasTimeFormat("1.1.2012", "%d.%m.%Y") # TRUE

hasTimeFormat("1.13.2012", "%d.%m.%Y") # FALSE
hasTimeFormat("1/31/2012", "%m/%d/%Y") # TRUE
hasTimeFormat("31/1/2012", "%m/%d/%Y") # FALSE

hasTimeFormat(c(”1.1.", "1.13.”, "12.12.", "32.1."), "%d.%m.")
TRUE FALSE TRUE FALSE

hsDateStr 9

hsDateStr Timestamp or Date Object to String in format yyyy-mm-dd

Description

Timestamp or Date Object to String in format yyyy-mm-dd

Usage
hsDateStr(tstamp)

Arguments

tstamp vector of date or time objects

hsToPosix Conversion to POSIXt

Description

Converts an object representing a date (and if applicable a time) into an object of class POSIXct.
Supported input classes are character, Date and POSIXt.

Usage
hsToPosix(datetime, keepTZ = is.null(tzone), tzone = NULL, 1t = FALSE, ...)
Arguments
datetime object of class POSIXt or Date or character representing date (and time) infor-
mation to be converted to class POSIXct.
keepTZ if TRUE and if the given object is already of POSIX-type, the returned POSIXct
object will be in the same time zone as the original object. Otherwise POSIX-
objects will be returned in the time zone tzone.
tzone time zone. Will be set to “UTC” if missing. UTC it the preferred time zone
as it seems that only UTC prevents the POSIXt-classes from applying daylight-
savings time.
1t if TRUE a POSIXIt object is returned instead of a POSIXct object.
further arguments to be passed to as.POSIXct/as.POSIXIt, e.g. format, help for
as.POSIXct/as. POSIXIt.
Details

If datetime is already of class POSIXIt or POSIXct the time zone is preserved unless keepTZ
is FALSE. If datetime is a character string it is expected to be in ISO format: “yyyy-mm-dd
[HH:MM:SS]” where the time-part in brackets is optional.

10 hsToPosix

Examples

Start with a string representing a timestamp
datetime <- "2011-01-02 12:34:56"

By default hsToPosix creates a POSIXct object:
ct <- hsToPosix(datetime)
class(ct) # "POSIXct" "POSIXt”

You may decide to create a POSIX1t object instead:
1t <- hsToPosix(datetime, 1t = TRUE)
class(lt) # "POSIX1t" "POSIXt"

With a POSIX1t object you can access the different parts of the timestamp
sprintf(”"%d hours, %d minutes, %d seconds”, lt$hour, 1t$min, lt$sec)

These are all available pieces of information
(isdst = is daylight savings time in effect)
sapply(attr(lt, "names”), function(name) try(lt[[namell))

You may use hsToPosix to convert between 1t and ct
identical (hsToPosix(ct, 1t = TRUE), 1t)
identical (hsToPosix(1lt, 1t = FALSE), ct)

The following time does not exist in CET/CEST but in UTC
as it is the time when daylight-savings time switched.
hsToPosix("2011-03-27 02:00:00") # "2011-03-27 02:00:00 UTC"

Compare with as.POSIXct: between 02:00:00 and 02:59:59 the
time information gets lost and is only recognized again

from 03:00:00 on. Similar results with as.POSIX1t.
as.POSIX1t("2011-03-27 01:59:59") # "2011-03-27 01:59:59"
as.POSIX1t("2011-03-27 02:00:00") # "2011-03-27"
as.POSIX1t("2011-03-27 ©02:59:59") # "2011-03-27"
as.POSIX1t("2011-03-27 03:00:00") # "2011-03-27 03:00:00"

When loading data from an Access table it will be of class
POSIXct:

#dat <- hsGetTable(xmdb(), "tbl_Hyd")

#class(dat$Zeitst) # "POSIXct" "POSIXt"

In order to prevent R from considering daylight savings time
we should convert to UTC time zone. But then we have to keep
in mind that the indication "UTC" is not correct as the time
stamps in fact represent the time zone "UTC+1"!
#head(dat$zZeitst)

"2011-08-23 00:00:00 CEST" "2011-08-23 00:01:00 CEST" ...

#head(hsToPosix(dat$Zeitst))
"2011-08-23 00:00:00 UTC" "2011-08-23 00:01:00 UTC" ...

hsTsIn 11

hsTsIn Deprecated use timestampIn instead

Description

Deprecated use timestampIn instead

Usage
hsTsIn(...)
Arguments
passed to timestampIn
intervalKey Representative String for Part of Timestamp
Description

Representative String for Part of Timestamp

Usage

intervalKey(tstamps, itype)

Arguments
tstamps (vector of) timestamp(s) of type POSXIXt
itype one of 'y’ (year), q’ (quarter in year), 'm’ (month in year), ’d’ (day in month in
year), 'w’ (week in year), 'D’ (weekday in month in year), ’qo’ (quarter only),
’mo’ (month only), ’do’ (day only), ’dm’ (day in month), 'wo’ (week only), Do’
(weekday only), 'Dy’ (weekday in year)
Examples

Define a sequence of times

times <- as.POSIXct(kwb.datetime: :sequenceOfTimestamps(
"2017-11-04 22:00:00", "2017-11-05 02:00:00", step.s = 3000

))

Apply all different defined types and print the result

for (type in rownames(kwb.datetime:::.timestamp_type_info())) {
kwb.utils::printIf(TRUE, intervalKey(times, type), paste("\ntype:", type))

3

12 is ValidTimestampSequence

isoTolLocaltime Text Timestamps to POSIXct

Description

Convert text timestamps in a format according to ISO 8601 to POSIXct objects

Usage

isoToLocaltime(timestamps, dbg = TRUE)

Arguments
timestamps vector of character timestamps of format yyyy-mm-dd HH:MM:SS+[01]02], i.e.
ending either in *+0100” (UTC offset in Berlin in winter) or *+0200’ (UTC offset
in Berlin in summer)
dbg if TRUE debug messages are shown
Examples

times <- isoToLocaltime(c(
"2017-10-29 01:00:00+0200",
"2017-10-29 01:30:00+0200",
"2017-10-29 02:00:00+0200",
"2017-10-29 02:30:00+0200",
"2017-10-29 02:00:00+0100",
"2017-10-29 02:30:00+0100",
"2017-10-29 03:00:00+0100",
"2017-10-29 03:30:00+0100"

))

class(times)
plot(times, rep(1, length(times)), ylab = "", xlab = "LocalTime")

isValidTimestampSequence
Check Sequence of Timestamps for Validity

Description

Different validation checks for sequence of timestamps

matching TimeFormat 13

Usage
isValidTimestampSequence(
timestamps,
checks = c("sorted”, "duplicates”, "timestep”),
dbg = FALSE
)
Arguments
timestamps vector of timestamps of class POSIXt
checks Vector of character indicating the checks to be performed. Available checks:
"sorted", "duplicates", "timestep". Default: perform all tests
dbg shall debug messages be shown?
Examples

timestamps <- sequenceOfTimestamps(”2017-11-03", "2017-11-04", 3600)
times <- as.POSIXct(timestamps)

isValidTimestampSequence(times)

isValidTimestampSequence(rev(times))
isValidTimestampSequence(timestamps = c(times[1], times))

matchingTimeFormat Find Time Format matching a Timestamp

Description

Find Time Format matching a Timestamp

Usage
matchingTimeFormat (
timestamp,
timeFormats = getTimeFormats(),
method = 1L,
warn = TRUE,
failureValue = NULL
)
Arguments
timestamp character timestamp to be checked against different possible timstamp formats
timeFormats vector of possible time formats with placeholders (year), described for format.POSIXct
method passed to hasTimeFormat
warn if TRUE an R warning is issued if no matching format was found. Otherwise a

message is given.

failureValue value returned in case that no matching format was found. Default: NULL

14 minTimeStep

Value

first time format in timeformats that matches the given timestamp. NULL is returned if none of the
given timeformats matches.

Examples

Convert a character timestamp of which the format can be one of two
possible formats into a POSIXct-object
possibleFormats <- c("%d.%m.%Y", "%d/%m/%Y")

x <= "14.01.2015"
t1 <- hsToPosix(x, format = matchingTimeFormat(x, possibleFormats))

In fact this is what stringToPosix does (for only one timestamp)
t2 <- stringToPosix(x, formats = possibleFormats)
stopifnot(identical(t1, t2))

You get a warning if none of the possible formats matches
matchingTimeFormat(”01.14.2015", possibleFormats)

minTimeStep Minimum Time Step in Sequence of Timestamps

Description

Minimum Time Step in Sequence of Timestamps

Usage

minTimeStep(tstamps, dbg = FALSE)

Arguments
tstamps vector of POSIX-type timestamps or any other vector that can be converted to
integer
dbg should debug messages be shown?
Examples

tstamps <- seq(as.POSIXct("2017-11-03"), as.POSIXct("2017-11-04"), 3600)
minTimeStep(tstamps)

No need for timestamps!
minTimeStep(c(10, 20, 30, 40, 45, 50, 60))
minTimeStep(c(10, 20, 30, 40, 45, 50, 60), dbg = TRUE)

reformatTimestamp 15

reformatTimestamp Convert Timstamp String from one Format to another

Description

Convert Timstamp String from one Format to another

Usage
reformatTimestamp(x, old.format = NULL, new.format = NULL, ...)
Arguments
X vector of timestamps (character)
old.format format in which timestamps in x are given. Default: "%Y-%m-%d %H: %M: %S"
new.format format to be applied to timestamps. Default: "%Y-%m-%d %H: %M: %S"
further arguments passed to hasTimeFormat, such as method
roundTime Timestamp complying with Time Step
Description

Returns for (each of) the given timestamp(s) the timestamp(s) itself if it represents a multiple of the
given time step or the nearest smaller or nearest greater timestamp that represents a multiple of the

time step.
Usage
roundTime(tstamp, tstep, direction = -1)
Arguments
tstamp (vector of) timestamp(s) of class "POSIXIt" or "POSIXct"
tstep time step in seconds of which timestamps in zstamp shall represent multiples
direction one of -1, 0, 1. If -1, the nearest timestamp (either smaller or greater) complying
with the timestamp is returned. If 0, always the nearest greater timestamp and if
1, always the nearest smaller timestamp is returned.
Value

(Vector of) timestamp(s) corresponding to timestamp(s) given in tstamp being “rounded” to the
nearest — greater or smaller (direction == -1), always smaller (direction == 1) or always greater
(direction == 0) — timestamp representing a multiple of the given time step zstep.

16 sequenceOfTimestamps

Examples

Generate a timestamp to be "rounded”
t0 <- hsToPosix("2011-12-24 18:22:05")

Round to nearest (default) full minute
roundTime(t@, 60) ## = 2011-12-24 18:22:00 UTC

Round to nearest full greater minute
roundTime(t@, 60, @) ## = 2011-12-24 18:23:00 UTC

Round to nearest multiple of 15 minutes (-1 could be omitted)
roundTime(t@, 15%60, -1) ## 2011-12-24 18:15:00 UTC

Round to nearest smaller multiple of four hours
roundTime(t0, 4x60x60, 1) ## 2011-12-24 16:00:00 UTC

sequenceOfTimestamps Create a Sequence of Timestamps

Description
Creates timestamps of mode character between first timestamp from and fo with a distance of step.s
seconds between the timestamps.

Usage

sequenceOfTimestamps(from, to, step.s = 60)

Arguments
from first timestamp of mode character in ISO-Syntax: yyyy-mm-dd [HH:MM:SS]
where the part in brackets is optional.
to last timestamp of mode character in ISO-Syntax: yyyy-mm-dd [HH:MM:SS]
where the part in brackets is optional.
step.s time step between the timestamps in seconds.
Value

Vector of character timestamps

Examples

Create timestamps of January 2011 with five minutes step
sequenceOfTimestamps(”2011-01-01 19:00:00", "2011-01-02", 300)

stringToPosix 17

stringToPosix Convert a Time String to a POSIXct Object

Description

Convert a time string to a POSIXct object. Allow for different possible timestamp formats.

Usage

stringToPosix(
X,
formats = c("%Y-%m-%d %H:%M:%S", "%Y-%m-%d %H:%M", "%Y-%m-%d"),

)
Arguments
X character vector of length one representing a timestamp
formats vector of allowed time formats (using %-placeholders)
arguments passed to hsToPosix
Examples

stringToPosix("2016-05-26")
stringToPosix("2016-05-26 12:00")

additional arguments passed to hsToPosix
stringToPosix("2016-05-26 12:00:33", tzone = "ETC/Gmt-1")

1t = TRUE -> create POSIX1t instead of POSIXct
1t1 <- stringToPosix("2016-05-26 17:00", 1t = TRUE)
1t2 <- stringToPosix("2016-05-26 17:00", 1t = TRUE, tz = "Europe/Berlin”)

1t1$hour
1t1$isdst # normal time (is daylight saving time = FALSE)
1t2$isdst # summer time (is daylight saving time = TRUE)

test_TimeConversionFunctions
Test Time Conversion Functions

Description

Test Time Conversion Functions

18

Usage

textToEuropeBerlinPosix

test_TimeConversionFunctions(year = 2000, normalToSummer = TRUE)

Arguments

year

year for which to demonstrate the switch between Central European Time (CET)
and Central European Summer Time (CEST)

normalToSummer TRUE: CET to CEST, FALSE: CEST to CET

textToEuropeBerlinPosix

Convert Text Timestamps to POSIXct Objects

Description

This function tries to overcome some problems that may arise when using as.POSIXct. It can
handle timestamps that originate from a clock that switches between standard time and summer
time as well as those originating from a clock that stays in standard time over the whole year. See
vignette("text_to_posixct”, package = "kwb.datetime") for details. It also tries to find a
convenient format description string.

Usage
textToEuropeBerlinPosix(x, format = NULL, switches = TRUE, dbg = TRUE, ...)
Arguments
X vector of text (i.e. character) timestamps
format format string describing the format of a timestamp, such as " placeholders. If
not given or NULL, the function tries to guess the format from the first timestamp
given in x.
switches if TRUE (the default), the timestamps are assumed to originate from a clock
that switches between standard time and summer time. Otherwise (switches
= FALSE) timestamps are assumed to originate from a clock that stays in stan-
dard time over the whole year.
dbg if TRUE debug messages are shown
further arguments passed to reformatTimestamp (only relevant if switches =
TRUE)
Details

When reading timestamps that observe Daylight Saving, it is required that the timestamps in x are
ordered by time, which should be the case if they were recorded by a measuring device.

timesAroundClockChange 19

Value

vector of POSIXct objects

Examples

Test the functions with the following "switch” days
kwb.datetime: :date_range_CEST(2019)

t1 <- textToEuropeBerlinPosix(c("”31.03.2019 01:00", "31.03.2019 03:00"))

t2 <- textToEuropeBerlinPosix(c("31.03.2019 01:00", "31.03.2019 02:00"),
switches = FALSE)

identical(t1, t2)

t3 <- textToEuropeBerlinPosix(c("27.10.2019 02:00", "27.10.2019 02:00"))

t4 <- textToEuropeBerlinPosix(c("27.10.2019 01:00", "27.10.2019 02:00"),
switches = FALSE)

identical(t3, t4)

kwb.datetime: : textToEuropeBerlinPosix(c(
"2017-10-29 01:30:00", # 1: CEST
"2017-10-29 02:00:00", # 2: CEST
"2017-10-29 02:30:00", # 3: CEST
"2017-10-29 02:00:00", # 4: CET
"2017-10-29 02:30:00", # 5: CET
"2017-10-29 03:00:00" # 6: CET

)

timesAroundClockChange
Times Around Clock Change in Central Europe

Description

Sequence of Times Around Clock Change in Central Europe

Usage

timesAroundClockChange(
year = 2000,
normalToSummer = TRUE,
step_s = 1800,
length.out = 5

20 timestampln

Arguments

year year for which to demonstrate the switch between Central European Time (CET)
and Central European Summer Time (CEST)

normalToSummer TRUE: CET to CEST, FALSE: CEST to CET

step_s time step in seconds
length.out number of time objects in returned vector
Value

vector of POSIXct objects with length length.out

Examples

timesAroundClockChange (2019, normalToSummer = TRUE)
timesAroundClockChange (2019, normalToSummer = FALSE)
timesAroundClockChange (2019, TRUE, step_s = 1, length.out = 3)
timesAroundClockChange (2019, FALSE, step_s = 1, length.out = 3)

timestampIn Timestamps within Time Interval?

Description

Returns vector of booleans indicating whether the timestamps at corresponding positions in a vector
of timestamps lie within a time interval, specified by first and/or last timestamp of the interval.

Usage

timestampIn(
tstamps,
tsFirst = NULL,
tsLast = NULL,
firstIncluded = TRUE,
lastIncluded = FALSE,

dbg = FALSE
)
Arguments

tstamps vector of timestamps, either as character strings in ISO-format (yyyy-mm-dd
HH:MM:SS), as Date objects or as POSIXt-objects

tsFirst first timestamp (firstIncluded == TRUE) or timestamp directly before first
timestamp (firstIncluded == FALSE) to be considered

tsLast last timestamp (lastIncluded == TRUE) or timestamp directly after last times-

tamp (lastIncluded == FALSE) to be considered

to.GMT.plus. 1 21

firstIncluded if TRUE, tsFirst represents the first, otherwise the timestamp direcly before the
first timestamp to be considered.

lastIncluded if TRUE, tsLast represents the last, otherwise the timestamp direcly after the last
timestamp to be considered.

dbg should debug messages be shown?

Examples

tstamps <- sequenceOfTimestamps(”2017-11-03", "2017-11-04")
table(timestampIn(tstamps, "2017-11-03 12:00:00", "2017-11-03 13:00:00"))

to.GMT.plus.1 Character Timestamps to POSIXct Objects (GMT+1)

Description

Character Timestamps to POSIXct Objects (GMT+1)

Usage

t0.GMT.plus.1(timestamp)

Arguments

timestamp character timestamp(s) to be converted to POSIXct in timezone "Etc/GMT+1"

Value

vector of POSIXct in timezone “Etc/GMT+1"

toGmtRelativePosix Character Timestamps to POSIXct Objects (GMT+offset)

Description

Convert character timestamps to POSIXct objects in time zont GMT+off5set

Usage

toGmtRelativePosix(timestamp, GMT.offset = 1, format = NULL)

Arguments
timestamp vector of timestamps (character)
GMT.offset offset to GMT time. Default: 1 = Berlin Normal Time
format format string describing the format of timstamp, see help for strptime. Default:

"%Y-%m-%d %H:%M:%S"

22 utcOffset

toUTC Convert POSIXt Object to UTC Time Zone

Description

Convert POSIXt Object to UTC Time Zone

Usage

toUTC(x)

Arguments

X object of class POSIXt (either POSIXct or POSIXIt)

Value

POSIXt object in UTC timezone (hopefully!)

Examples

Create a timestamp in the time zone that is set on the local machine
time <- as.POSIXct("2017-11-01 @1:16")

Convert time zone to UTC
time_utc <- toUTC(time)

The new time zone "UTC" is set in the attribute "tz"
attr(time_utc, "tz")

The times mean the same, just expressed in another time zone!
time_utc == time

utcOffset Get UTC Offset from Local and UTC Timestamp (Character)

Description

Get UTC Offset from Local and UTC Timestamp (Character)

Usage

utcOffset(LocalDateTime, DateTimeUTC)

utcOffsetBerlinTime 23

Arguments

LocalDateTime character string representing a local timestamp

DateTimeUTC character string representing a time stamp in UTC

utcOffsetBerlinTime UTC Offsets of Berlin Local Timestamps

Description

For local timestamps (character) in the format "yyyy-mm-dd HH:MM: SS", of which is known that
they are recorded in time zone Europe/Berlin, i.e. CET in winter and CEST in summer, the UTC
offset (i.e. "+1" in winter and "+2" in summer) is determined. Therefore, it is required that the
timestamps are ordered by time, which should be the case if they were recorded by a measuring
device. Use this function to create unique timestamps by adding their UTC offset.

Usage

utcOffsetBerlinTime(timestamps)

Arguments

timestamps vector of character representing timestamps in format "yyyy-mm-dd HH:MM: SS”

Value

vector of elements "+0100" or "+0200", depending on whether the timestamps at corresponding
positions in timestamps are in CET or CEST, respectively.

Examples

Change from CET to CEST
utcOffsetBerlinTime(c(
"2017-03-26 01:58:00",
"2017-03-26 01:59:00",
"2017-03-26 03:00:00", # jump from 02:00 to 03:00
"2017-03-26 03:01:00",
"2017-03-26 03:02:00"
)

#> "+0200" "+0200" "+0100" "+0100" "+0100"

Note that the following timestamps do not exist in Europe/Berlin timezone
and would result in an error
Not run:
utcOffsetBerlinTime(c(
"2017-03-26 02:00:00",
"2017-03-26 02:15:00",
"2017-03-26 02:30:00",

24

"2017-03-26 02:45:00"

)
End(Not run)

#> "+0200" "+0200" "+0200" "+0200"

Change from CEST to CET

utcOffsetBerlinTime(c(

"2017-10-29 01:30:00",
"2017-10-29 02:00:00",
"2017-10-29 02:30:00",
"2017-10-29 02:00:00",

"2017-10-29 02:30:00"
))

CEST

first time: CEST
first time: CEST
second time: CET
second time: CET

#> "+0200" "+0200" "+0200" "+0100" "+0100"

utcOffsetBerlinTime

Index

as.P0OSIXct, 8, I8

berlinNormalTimeToBerlinLocalTime, 2
berlinNormalTimeToUTC, 3

currentDateString, 3
currentQuarter, 4
currentYear, 4

date_range_CEST, 4
daysPerMonth, 5

getEqualStepRanges, 6
getTimestampSummary, 7
getTimestepInSeconds, 7

hasTimeFormat, 8, 13, 15
hsDateStr, 9
hsToPosix, 9, 17
hsTsIn, 11

intervalKey, 11
isoToLocaltime, 12
isValidTimestampSequence, 12

matchingTimeFormat, 13
minTimeStep, 14

reformatTimestamp, 15, I8
roundTime, 15

sequenceOfTimestamps, 16
stringToPosix, 17
strptime, 8

test_TimeConversionFunctions, 17
textToEuropeBerlinPosix, 18
timesAroundClockChange, 19
timestampln, /1,20
to.GMT.plus. 1,21
toGmtRelativePosix, 21

25

toUTC, 22

utcOffset, 22
utcOffsetBerlinTime, 23

	berlinNormalTimeToBerlinLocalTime
	berlinNormalTimeToUTC
	currentDateString
	currentQuarter
	currentYear
	date_range_CEST
	daysPerMonth
	getEqualStepRanges
	getTimestampSummary
	getTimestepInSeconds
	hasTimeFormat
	hsDateStr
	hsToPosix
	hsTsIn
	intervalKey
	isoToLocaltime
	isValidTimestampSequence
	matchingTimeFormat
	minTimeStep
	reformatTimestamp
	roundTime
	sequenceOfTimestamps
	stringToPosix
	test_TimeConversionFunctions
	textToEuropeBerlinPosix
	timesAroundClockChange
	timestampIn
	to.GMT.plus.1
	toGmtRelativePosix
	toUTC
	utcOffset
	utcOffsetBerlinTime
	Index

