Package 'flextreat.hydrus1d'

Title: R Package for Soil Water Balance and Solute Transport Modelling Scenarios for Project Flextreat
Description: R Package for Soil Water Balance and Solute Transport Modelling Scenarios for Project Flextreat.
Authors: Michael Rustler [aut, cre] , Hauke Sonnenberg [ctb] , FlexTreat [fnd], Kompetenzzentrum Wasser Berlin gGmbH (KWB) [cph]
Maintainer: Michael Rustler <[email protected]>
License: MIT + file LICENSE
Version: 0.2.0
Built: 2025-01-10 06:29:41 UTC
Source: https://github.com/KWB-R/flextreat.hydrus1d

Help Index


Helper function: add times

Description

Helper function: add times

Usage

add_times(df, sim_datetime_start = as.POSIXct("2017-05-01", tz = "UTC"))

Arguments

df

df

sim_datetime_start

simulation start as datetime object (default: as.POSIXct("2017-05-01", tz = "UTC"))

Value

data frame with added times


Aggregate Atmosphere

Description

for hydrologic years

Usage

aggregate_atmosphere(atm_selected, format = "wide")

Arguments

atm_selected

atm_selected as retrieved by prepare_atmosphere_data

format

"wide" or "long

Value

aggregated data


Aggregate Solute

Description

Aggregate Solute

Usage

aggregate_solute(
  solute,
  sim_datetime_start = as.POSIXct("2017-05-01", tz = "UTC"),
  col_aggr = "date"
)

Arguments

solute

solute as retrieved by read_solute

sim_datetime_start

simulation start as datetime object (default: as.POSIXct("2017-05-01", tz = "UTC"))

col_aggr

column to be aggregated. One of "date", "yearmonth", "year" or "year_hydrologic" (default: "date")

Value

aggregated solute


Aggregate t_level

Description

only for columns starting with "sum" and matching "volume"

Usage

aggregate_tlevel(
  t_level,
  sim_datetime_start = as.POSIXct("2017-05-01", tz = "UTC"),
  col_aggr = "date"
)

Arguments

t_level

t_level as retrieved by read_tlevel

sim_datetime_start

simulation start as datetime object (default: as.POSIXct("2017-05-01", tz = "UTC"))

col_aggr

column to be aggregated. One of "date", "yearmonth", "year" or "year_hydrologic" (default: "date")

Value

aggregated t_level data


Helper function: combine dataframes

Description

Helper function: combine dataframes

Usage

combine_dataframes(df_list)

Arguments

df_list

df_list

Value

df


Helper function: copy column

Description

Helper function: copy column

Usage

copy_column(df, column, number_of_new_columns)

Arguments

df

data fram

column

name of colum to copy

number_of_new_columns

number of columns to be copied

Value

df with copied column names

Examples

# Beispiel-Tibble
tb <- tibble::tibble(
ID = 1:5,
Wert = c(10, 20, 30, 40, 50)
)

# Anwendung der Funktion
tb_neu <- copy_column(tb, "Wert", 3)
print(tb_neu)

Aggregate Atmospheric Data to Monthly Values

Description

Aggregate Atmospheric Data to Monthly Values

Usage

create_monthly_atm(atm = prepare_atmosphere_data())

Arguments

atm

atm as retrieved by prepare_atmosphere_data

Value

tibble with yearly atmospheric data values

Examples

create_monthly_atm()

DWD: Potential Evaporation, Daily

Description

Median daily potential evaporation for irrigation area (i.e. ~44km2), based on 1x1km2 grids of DWD. Downloaded with read_daily_data_over_shape between 2017-01-01 and 2020-12-31

Usage

evapo_p

Format

A data.frame with 1461 rows and 10 variables:

file

name of downloaded grid file source

date

date

year

year

month

month

day

day

mean

spatially averaged, mean

sd

spatially averaged, standard deviation

min

spatially averaged, min

max

spatially averaged, max

n_values

number of grid-cells used for spatial averaging

Examples

## Not run: 
### Data download
remotes::install_github("kwb-r/kwb.dwd")
shape_file <- system.file("extdata/input-data/gis/Abwasserverregnungsgebiet.shp",
package = "flextreat.hydrus1d")

# Only data of full months can currently be read!
evapo_p <- kwb.dwd::read_daily_data_over_shape(
file = shape_file,
variable = "evapo_p",
from = "201701",
to = "202012"
)
## End(Not run)
head(flextreat.hydrus1d::evapo_p)

Get Hydrologic Years

Description

Get Hydrologic Years

Usage

get_hydrologic_years(datetime)

Arguments

datetime

datetime string

Value

integer vector with hydrologic year


Get traveltimes (for conservative tracers)

Description

Get traveltimes (for conservative tracers)

Usage

get_traveltimes(solute_files, dbg = TRUE)

Arguments

solute_files

paths to solute files, with good naming convention for monthly solute exposition (e.g. 0110, solute1: first month, solute10: tenth month after simulation start)

dbg

debug messages (default: TRUE)

Value

tibble with time of substance at top/bottom and diff time. Note that the percentile relate to the substance load


Helper function: interpolate time

Description

Helper function: interpolate time

Usage

interpolate_time(
  solute,
  percentiles = c(0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99)
)

Arguments

solute

solute result tibble

percentiles

(default: c(0.01, 0.05, 0.1, 0.25,0.5, 0.75, 0.9, 0.95, 0.99))

Value

tibble with interpolated times for percentiles


Irrigation: Monthly

Description

Monthly irrigation values provided by AVB (in cubicmeters) downscaled to daily values (by dividing with "days_in_month" and normalised to mm/squaremeter by dividing with assumed irrigation area (44111068 m2)

Usage

irrigation

Format

A data.frame with 8835 rows and 3 variables:

year

year

month

month

days_in_month

days in month

date_start

date start

date_end

date end

irrigation_area_sqm

irrigation area in squaremeter

"groundwater.mmPerDay

irrigation using "groundwater" (mm/sqm)

"clearwater.mmPerDay

irrigation using "clearwater" (mm/sqm)

)

Examples

## Not run: 
install.packages(c("dplyr", "tidyr"))
irrigation_file <- system.file("extdata/input-data/Beregnungsmengen_AVB.csv",
package = "flextreat.hydrus1d")

# irrigation_area <- rgdal::readOGR(dsn = shape_file)
# irrigation_area_sqm <- irrigation_area$area  # 44111068m2

## 2700ha (https://www.abwasserverband-bs.de/de/was-wir-machen/verregnung/)
irrigation_area_sqm <- 27000000

irrigation <- read.csv2(irrigation_file) %>%
  dplyr::select(- .data$Monat) %>%
  dplyr::rename(irrigation_m3 = .data$Menge_m3,
                source = .data$Typ,
                month = .data$Monat_num,
                year = .data$Jahr) %>%
  dplyr::mutate(date_start = as.Date(sprintf("%d-%02d-01",
                                             .data$year,
                                             .data$month)),
                days_in_month = as.numeric(lubridate::days_in_month(.data$date_start)),
                date_end =  as.Date(sprintf("%d-%02d-%02d",
                                            .data$year,
                                            .data$month,
                                            .data$days_in_month)),
                source = kwb.utils::multiSubstitute(.data$source,
                                                    replacements = list("Grundwasser" = "groundwater.mmPerDay",
                                                                        "Klarwasser" = "clearwater.mmPerDay")),
                irrigation_cbmPerDay = .data$irrigation_m3/.data$days_in_month,
                irrigation_area_sqm = irrigation_area_sqm,
                irrigation_mmPerDay = 1000*irrigation_cbmPerDay/irrigation_area_sqm) %>%
  dplyr::select(.data$year,
                .data$month,
                .data$days_in_month,
                .data$date_start,
                .data$date_end,
                .data$source,
                .data$irrigation_mmPerDay,
                .data$irrigation_area_sqm) %>%
  tidyr::pivot_wider(names_from = .data$source,
                     values_from = .data$irrigation_mmPerDay)

## End(Not run)
head(flextreat.hydrus1d::irrigation)

Materials

Description

A dataset containing hydraulic soil characteristics from Hydrus1D GUI database

Usage

materials

Format

A data frame with 12 rows and 7 variables:

material_name

Name of soil

Qr

Residual soil water content

Qs

Saturated soil water content

Alpha

Parameter a in the soil water retention function (L-1, here: cm)

n

Parameter n in the soil water retention function

Ks

Saturated hydraulic conductivity (unit: LT-1, here: cm/day)

I

Tortuosity parameter in the conductivity function (-)

Source

Hydrus1D GUI -> Soil Hydraulic Properties (Pre-Processing Menu, Water Flow Submenu)

Examples

materials

Plot Atmosphere

Description

Plot Atmosphere

Usage

plot_atmosphere(atm_selected_hydro_long)

Arguments

atm_selected_hydro_long

as retrieved by aggregate_atmosphere in "long" format

Value

plot atmosphere


Plot Monthly Atmospheric Data

Description

Plot Monthly Atmospheric Data

Usage

plot_monthly_atm()

Value

plot of monthly atmospheric data

Examples

plot_monthly_atm()

Plot Solute

Description

Plot Solute

Usage

plot_solute(solute_aggr, y_label = "Share of 'clearwater' (%)")

Arguments

solute_aggr

solute_aggr as retrieved by aggregate_solute

y_label

y_label (default: "Share of 'clearwater' (%)")

Value

plot solute


Plot traveltimes

Description

Plot traveltimes

Usage

plot_traveltimes(solute_travel, title = "", ylim = NULL)

Arguments

solute_travel

tibble as retrieved by get_traveltimes

title

optional title (default: "")

ylim

optional ylim (default: NULL)

Value

plotly of traveltimes for different percentiles


Plot Water Balance

Description

Plot Water Balance

Usage

plot_waterbalance(
  tlevel_aggr,
  y_label = "Water Balance Component",
  unit_org = "cm",
  unit_target = "mm"
)

Arguments

tlevel_aggr

aggregated t_level as retrieved by aggregate_tlevel

y_label

default: "Water Balance Component (mm)"

unit_org

original unit in "t_level" (default: "cm")

unit_target

target unit for plot (default: "mm")

Value

plot water balance


Precipitation: Daily

Description

Hourly precipitation data downloaded from DWD for monitoring station Braunschweig (id = 662) between 1997-10-22 and 2021-12-31, which were aggregated to daily values within R

Usage

precipitation_daily

Format

A data.frame with 8835 rows and 3 variables:

year

year

month

month

days_in_month

days in month

date_start

date start

date_end

date end

irrigation_area_sqm

irrigation area in squaremeter

"groundwater.mmPerDay

irrigation using "groundwater" (mm/sqm)

"clearwater.mmPerDay

irrigation using "clearwater" (mm/sqm)

)

Examples

## Not run: 
install.packages(c("dplyr", "rdwd"))
library(dplyr)
rdwd::updateRdwd()
rdwd::findID("Braunschweig")
rdwd::selectDWD(name = "Braunschweig", res = "daily")

url_bs_rain <- rdwd::selectDWD(name = "Braunschweig",
                              res = "hourly",
                              var = "precipitation",
                              per = "historical" )

bs_rain <- rdwd::dataDWD(url_bs_rain)

precipitation_hourly <- rdwd::dataDWD(url_bs_rain) %>%
 dplyr::select(.data$MESS_DATUM, .data$R1) %>%
 dplyr::rename("datetime" = "MESS_DATUM",
               "precipitation_mm" = "R1")

precipitation_daily <- precipitation_hourly %>%
 dplyr::mutate("date" = as.Date(datetime)) %>%
 dplyr::group_by(date) %>%
 dplyr::summarise(rain_mm = sum(precipitation_mm))


## End(Not run)
head(flextreat.hydrus1d::precipitation_daily)

Precipitation: Hourly

Description

Hourly precipitation data downloaded from DWD for monitoring station Braunschweig (id = 662) between 1997-10-22 and 2021-12-31

Usage

precipitation_hourly

Format

A data.frame with 211629 rows and 2 variables:

datetime

date time

precipitation_mm

precipitation in mm

Examples

## Not run: 
install.packages(c("dplyr", "rdwd"))
library(dplyr)
rdwd::updateRdwd()
rdwd::findID("Braunschweig")
rdwd::selectDWD(name = "Braunschweig", res = "daily")

url_bs_rain <- rdwd::selectDWD(name = "Braunschweig",
                              res = "hourly",
                              var = "precipitation",
                              per = "historical" )

bs_rain <- rdwd::dataDWD(url_bs_rain)

precipitation_hourly <- rdwd::dataDWD(url_bs_rain) %>%
 dplyr::select(.data$MESS_DATUM, .data$R1) %>%
 dplyr::rename("datetime" = "MESS_DATUM",
               "precipitation_mm" = "R1")


## End(Not run)
head(flextreat.hydrus1d::precipitation_hourly)

Prepare Atmosphere

Description

Prepares atmospheric input data structure required by HYDRUS1D and by default uses a conservative tracer in irrigation source "clearwater" ( set to 1) in order to track the share of cleaned wastewater in the system inflow rate (as "Prec" column is a combined value of irrigation using either "groundwater" or "clearwater" and real "rainfall").

Usage

prepare_atmosphere(
  atm,
  conc_irrig_clearwater = 100,
  conc_irrig_groundwater = 0,
  conc_rain = 0,
  defaults = kwb.hydrus1d::defaults_atmosphere()
)

Arguments

atm

atm as retrieved by prepare_atmosphere_data

conc_irrig_clearwater

substance concentration in source "clearwater" used for irrigation (default: 100, set all other source concentrations in default to 0 in order to calculate share of "clearwater" infiltration to groundwater)

conc_irrig_groundwater

substance concentration in source "groundwater" used for irrigation (default: 0)

conc_rain

substance concentration in rainfall (default: 0)

defaults

defaults for undefined parameterskwb.hydrus1d::defaults_atmosphere()

Value

tibble with peoered

Examples

atm <- prepare_atmosphere_data()
atm_selected <- select_hydrologic_years(atm)
prepare_atmosphere(atm_selected)

Prepare Atmospheric Data

Description

Prepare Atmospheric Data

Usage

prepare_atmosphere_data()

Value

data frame with atmospheric data for Braunschweig

Examples

atm <- prepare_atmosphere_data()
atm

Recalculate c_top with virtual storage

Description

Recalculate c_top with virtual storage

Usage

recalculate_ctop_with_virtualstorage(atm, tlevel, crit_v_top = -0.05)

Arguments

atm

atmosphere time series data

tlevel

tlevel of model output (use kwb.hydrus1d::read_tlevel)

crit_v_top

critical v_top rate (default: - 0.05)

Value

tibble with modified c_top values in order to respect that evaporation is often larger compared to precipitation


Select hydrologic years

Description

Select hydrologic years

Usage

select_hydrologic_years(atm = prepare_atmosphere_data())

Arguments

atm

atm as retrieved by prepare_atmosphere_data

Value

select hydrologic years

Examples

atm <- prepare_atmosphere_data()
atm_selected <- select_hydrologic_years(atm)
head(atm_selected)
tail(atm_selected)