
Package: fakin.path.app (via r-universe)
October 11, 2024

Title Shiny App to Visualise File Paths

Version 0.3.0

Description This package contains an R Shiny App that loads file path
information from a file and displays the paths in different
ways. The aim of the app is to find weaknesses in the folder
structure.

License MIT + file LICENSE

URL https://github.com/KWB-R/fakin.path.app

BugReports https://github.com/KWB-R/fakin.path.app/issues

Encoding UTF-8

LazyData true

Suggests covr (>= 3.2.1), kwb.db (>= 0.3.0), RMySQL (>= 0.10.17),
knitr (>= 1.23), rmarkdown (>= 1.13), testthat (>= 2.2.1)

RoxygenNote 6.1.1

Imports bit64 (>= 0.9.7), data.table (>= 1.11.8), dplyr (>= 0.8.1), DT
(>= 0.7), fs (>= 1.3.1), gdata (>= 2.18.0), ggplot2 (>= 3.2.0),
htmltools (>= 0.3.6), jsTree (>= 1.0.1), kwb.file (>= 0.3.0),
kwb.utils (>= 0.5.0), magrittr (>= 1.5), networkD3 (>= 0.4),
pathlist (>= 0.2.0), plotly (>= 4.9.0), readr (>= 1.3.1), rlang
(>= 0.4.0), shiny (>= 1.3.2), shinyFiles (>= 0.7.3), shinyjs
(>= 1.0), treemap (>= 2.4.2), wordcloud (>= 2.6)

VignetteBuilder knitr

Remotes github::hsonne/pathlist, github::kwb-r/kwb.db,
github::kwb-r/kwb.file, github::kwb-r/kwb.utils

Repository https://kwb-r.r-universe.dev

RemoteUrl https://github.com/KWB-R/fakin.path.app

RemoteRef HEAD

RemoteSha 3882d91321a5b40a2bda685c1e40f6acb2f503a1

1

https://github.com/KWB-R/fakin.path.app
https://github.com/KWB-R/fakin.path.app/issues

2 get_and_save_file_info

Contents
get_and_save_file_info . 2
get_recursive_file_info . 3
guess_file_metadata . 3
left_substring_equals . 4
name_is_ok . 5
name_to_traffic_light . 5
plot_all_treemaps . 6
plot_path_network . 7
plot_treemaps_from_path_data . 8
prepare_for_treemap . 9
read_file_paths . 9
read_lines . 10
run_app . 10
run_app_scan . 11
write_csv . 11
write_file_info . 12

Index 13

get_and_save_file_info

Get and Save File Information

Description

Get and Save File Information

Usage

get_and_save_file_info(root_dir, output_dir, check_dirs = TRUE,
format = "%Y-%m-%d_%H%M", ...)

Arguments

root_dir path to the directory from which to start searching for files
output_dir path to the output directory. In this directory, a file "path-info_<date-time>_<parent-

folder>.csv" will be generated with <date-time> being a date and time string in
yyyy-mm-dd_HHMM format and <parent-folder> being the last path segment
of root_dir

check_dirs if TRUE (default) it is checked in advance if both root_dir and output_dir
exist. Switch this off if e.g. network paths are wrongly considered to be non-
existing.

format format string specifying how to format the part of the filename intended to con-
tain date (and, if required, time) information. Default: "%Y-%m-%d_%H%M"

... further arguments passed to get_recursive_file_info and finally to fs::dir_info.
Set e.g. fail = FALSE to avoid failure due to insufficient access permissions.

get_recursive_file_info 3

Value

full path to the file to which all file information were written

get_recursive_file_info

Call file.info recursively on files below a root folder

Description

Call file.info recursively on files below a root folder

Usage

get_recursive_file_info(root_dir, pattern = NULL, all = TRUE, ...,
dbg = TRUE)

Arguments

root_dir path to the root directory from which to start the recursive search for files

pattern regular expression matching the names of the files to be considered. By default,
all files are considered.

all if TRUE (default) hidden files are also returned

... further arguments passed to fs::dir_info

dbg if TRUE (default) progress messages are shown

guess_file_metadata Guess Metadata about a Text File

Description

Guess Metadata about a Text File

Usage

guess_file_metadata(file, n_first_rows = 1000, ...)

Arguments

file path to text file

n_first_rows number of first rows of file from which to guess the meta information.

... further arguments passed to fakin.path.app:::read_lines, such as fileEncoding

4 left_substring_equals

Value

data frame with columns

• paths: does the file seem to contain path information, i.e. were slashes or backslashes found?

• forbidden: does the file contain characters that are forbidden in file paths?

• header: does the file seem to contain a header row?

• windows: are the paths given in "windows"-style, i.e. are the path segments separated by
backslash?

• sep: column separator guessed

• ncol: number of columns guessed

and attributes

• file: a copy of the file path given in file

• first_rows: first n_first_rows rows of file

• columns (optional): column headers if the file is assumed to contain a header row

left_substring_equals Is Left Substring of X Equal To Y?

Description

Is Left Substring of X Equal To Y?

Usage

left_substring_equals(x, y)

Arguments

x String of which the left part is compared with y

y String to be compared with the left part of x

name_is_ok 5

name_is_ok Is the Name Ok According to Our Best Practices?

Description

Is the Name Ok According to Our Best Practices?

Usage

name_is_ok(x, mildness = 1)

Arguments

x vector of character

mildness level of mildness. 1: not mild, all characters must be hyphen or alphanumeric
or dot or underscore, 2: more mild, all characters must be one of the above or
space

Value

vector of logical as long as x

Examples

name_is_ok(c("a", "$", ".", " "))
name_is_ok(c("a", "$", ".", " "), mildness = 2)

name_to_traffic_light Get Traffic Light Colours for Names

Description

Get Traffic Light Colours for Names

Usage

name_to_traffic_light(x)

Arguments

x character of (file or folder) names, e.g. as they appear as node labels in the plot
generated with plot_path_network

6 plot_all_treemaps

Value

vector of colour strings each of which is green (name does comply with naming convention),
yellow (name does almost comply with naming convention), red (name does not comply with
naming convention).

Examples

Define a vector of names
x <- c("has_speci&l", "has space", "is_ok")

Colour names by their compliance with naming convention
name_to_traffic_light(x)

plot_all_treemaps Plot Treemaps for All given Path Infos

Description

Plot Treemaps for All given Path Infos

Usage

plot_all_treemaps(path_infos, as_png = TRUE, ...)

Arguments

path_infos list of data frames each of which contains file path information as returned by
read_file_info

as_png if TRUE the plots are saved to png-files in tempdir(). The name is then taken
from the names of the elements in path_infos. Otherwise the plot go into the
current graphical device.

... further arguments passed to plot_treemaps_from_path_data, such as n_levels

Value

for as_png = TRUE vector of paths to the created png files.

plot_path_network 7

plot_path_network Plot Paths as Sankey Network

Description

Plot Paths as Sankey Network

Usage

plot_path_network(paths, max_depth = 3, nodePadding = 8,
nodeHeight = 10, sinksRight = FALSE, remove_common_root = TRUE,
names_to_colours = name_to_traffic_light, height = NULL, ...,
method = 1, weight_by = c("n_files", "size", "none")[1],
sizes = NULL)

Arguments

paths character vector of paths

max_depth maximum depth of paths to be shown

nodePadding passed to sankeyNetwork, see there. Decrease this value (e.g. ‘nodePadding =
0‘) if there are many nodes to plot and the plot does not look as expected

nodeHeight height of a node in pixels. Used to calculate the total plot height.

sinksRight passed to sankeyNetwork, see there
remove_common_root

remove the common root parts? (default: TRUE)
names_to_colours

if not NULL expected to be a function that accepts a vector of (node) names and
returns a vector of (colour) names of same length. This function will be called by
plot_path_network to determine the colour for each node based on its name.
By default, the function name_to_traffic_light is called.

height plot height in pixels, passed to sankeyNetwork. If NULL, the height is calculated
based on nodeHeight, nodePadding and the maximum number of nodes at one
folder depth.

... further arguments passed to sankeyNetwork, such as nodeWidth, nodePadding,
fontSize

method if 1 (default) the function behaves as before, another value activates the new
preparation of paths accepting/using an object of class pathlist

weight_by one of "n_files", "size", "none". Specifies whether to set the link widths
according to the total number or total size of files in subsequent folders or by
setting all links to the same width.

sizes file sizes corresponding to the paths

Value

object representing an HTML page

8 plot_treemaps_from_path_data

Examples

Get the paths to all folders on the desktop
paths <- dir(system.file(package = "fakin.path.app"), recursive = TRUE)

Plot the folder network
plot_path_network(paths)

plot_treemaps_from_path_data

Plot Treemaps Given File Path Data

Description

Plot Treemaps Given File Path Data

Usage

plot_treemaps_from_path_data(path_data, root_path = "", name = "root",
as_png = FALSE, n_levels = 2, output_dir = tempdir(),
type = "value", args_png = list(), n_biggest = -1, depth = 1,
types = c("size", "files"))

Arguments

path_data data frame containing file path information as returned by read_file_info

root_path path to the folder that contains all paths to be considered. By setting the root
path to "/path/to/root" you can "zoom into" the treeplot, showing the contents
below "/path/to/root" only. If root_path is "" (default) all paths in path_data
are considered.

name name to be used in png file name if as_png is set. If path_data is a list, the
names of the list elements are used.

as_png if TRUE (default) the plots are saved to png files in the directory given in output_dir
(tempdir() by default). Otherwise they are plotted into the active graphical de-
vice.

n_levels number of folder depth levels to be shown in the plots

output_dir path to output directory if as_png = TRUE. Default: tempdir()

type passed to treemap

args_png list of arguments passed to png if as_png = TRUE

n_biggest vector of integer, specifying the number(s) of biggest folders (in terms of size
and number of files) in which to "zoom into". The position in the vector repre-
sents the folder depth. For example, if n_biggest = c(2, 1), the first element
(2) indicates that sub-treemaps are produced for the two biggest subfolders be-
low root_path: for root_path/biggest-1 and for root_path/biggest-2.

prepare_for_treemap 9

The second element (1) indicates that further treemaps are generated only for the
biggest subfolders below root_path/biggest-1 and root_path/biggest-2,
respectively, in each case. The length of the vector n_biggest determines the
maximal depth until which to generate treemaps. By setting an element to -1L
you specify that sub-treemaps are generated for each subfolder on the corre-
sponding folder depth.

depth current depth of recursion

types type(s) of treeplots: one or both of c("size", "files") (the default).

prepare_for_treemap Prepare and Filter Path Data for Treemap Plot

Description

Prepare and Filter Path Data for Treemap Plot

Usage

prepare_for_treemap(path_data, root_path = "", variable = "size", ...)

Arguments

path_data data frame as returned by read_file_info

root_path path to the folder that contains all paths to be considered. By setting the root
path to "/path/to/root" you can "zoom into" the treeplot, showing the contents
below "/path/to/root" only. If root_path is "" (default) all paths in path_data
are considered.

variable name(s) of variable(s) to be selected. Default: "size"

... further arguments passed to remove_common_root, such as n_keep (number of
last segments to be kept from the common first part of all paths)

read_file_paths Read File Paths from a File

Description

The function tries to guess what type of file is given to the function and calls the appropriate function
to read the file. The aim of this function is to provide a common result format independent from the
type of file that was read.

Usage

read_file_paths(file, metadata = NULL)

10 run_app

Arguments

file file containing file path information (path only or additional information such as
file type, size or creation/modification time, etc.)

metadata data frame containing metadata about the file. If given, it must look as what
guess_file_metadata returns. If NULL the same function is called to guess
metadata about the file.

Value

data frame with columns...

read_lines Read Lines by Giving the File Encoding

Description

Read Lines by Giving the File Encoding

Usage

read_lines(file, ..., encoding = "unknown", fileEncoding = "")

Arguments

file a connection object or character string
... arguments passed to readLines

encoding passed to readLines.
fileEncoding The name of the encoding to be assumed. Passed as encoding to file, see

there.

run_app Run the Shiny App

Description

Run the Shiny App

Usage

run_app(path_database = default_targetdir(), ...)

Arguments

path_database if not NULL the path to a folder containing text files with path information. De-
fault: fakin.path.app:::default_targetdir()

... further key = value pairs to be used as global variables

run_app_scan 11

run_app_scan Run the App that Stores File Information to CSV Files

Description

Run the App that Stores File Information to CSV Files

Usage

run_app_scan()

write_csv Write Data Frame to CSV File

Description

Write Data Frame to CSV File

Usage

write_csv(data, file, sep = ";", version = 2, ...)

Arguments

data data frame

file path to CSV file to be written

sep column separator

version determines which function to use for writing the CSV file 1: write.table, 2:
fwrite

... further arguments passed to write.table or fwrite

12 write_file_info

write_file_info Write File Information to CSV File

Description

Write File Information to CSV File

Usage

write_file_info(file_info, file, version = 2)

Arguments

file_info data frame as returned by get_recursive_file_info

file path to CSV file to be written

version determines which function to use for writing the CSV file 1: write.table, 2:
fwrite

Index

file, 10
fwrite, 11, 12

get_and_save_file_info, 2
get_recursive_file_info, 2, 3, 12
guess_file_metadata, 3, 10

left_substring_equals, 4

name_is_ok, 5
name_to_traffic_light, 5, 7

plot_all_treemaps, 6
plot_path_network, 5, 7
plot_treemaps_from_path_data, 6, 8
png, 8
prepare_for_treemap, 9

read_file_info, 6, 8, 9
read_file_paths, 9
read_lines, 10
readLines, 10
remove_common_root, 9
run_app, 10
run_app_scan, 11

sankeyNetwork, 7

treemap, 8

write.table, 11, 12
write_csv, 11
write_file_info, 12

13

	get_and_save_file_info
	get_recursive_file_info
	guess_file_metadata
	left_substring_equals
	name_is_ok
	name_to_traffic_light
	plot_all_treemaps
	plot_path_network
	plot_treemaps_from_path_data
	prepare_for_treemap
	read_file_paths
	read_lines
	run_app
	run_app_scan
	write_csv
	write_file_info
	Index

